Advertisement

Human Genetics

, Volume 135, Issue 9, pp 1071–1082 | Cite as

Genome editing and the next generation of antiviral therapy

  • Daniel Stone
  • Nixon Niyonzima
  • Keith R. Jerome
Review
Part of the following topical collections:
  1. Genome Editing

Abstract

Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.

Keywords

Gene Editing Viral Episome Antiviral Therapeutics Engineer Endonuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Chelsea Spragg for critical reading of this manuscript. This work was funded by a philanthropic Grant from the Caladan Foundation, by NIH supported Martin Delaney Collaboratory Grant U19 AI 096111, NIH Grants R21 AI117519 and R21 AI107252, and in part by a developmental Grant from the University of Washington Center for AIDS Research (CFAR), an NIH funded program under Award Number P30 AI 027757 which is supported by the following NIH Institutes and Centers (NIAID, NCI, NIMH, NIDA, NICHD, NHLBI, NIA, NIGMS, NIDDK).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, Rohde ME, Wong SY, Davidson RJ, Zhou S, Gregory PD, Holmes MC, High KA (2013) Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122:3283–3287. doi: 10.1182/blood-2013-04-497354 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aubert M, Boyle NM, Stone D, Stensland L, Huang ML, Magaret AS, Galetto R, Rawlings DJ, Scharenberg AM, Jerome KR (2014) In vitro inactivation of latent HSV by targeted mutagenesis using an HSV-specific homing endonuclease. Mol Ther Nucleic Acids 3:e146. doi: 10.1038/mtna.2013.75 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barese CN, Felizardo TC, Sellers SE, Keyvanfar K, Di Stasi A, Metzger ME, Krouse AE, Donahue RE, Spencer DM, Dunbar CE (2015) Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques. Stem Cells 33:91–100. doi: 10.1002/stem.1869 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barzel A, Privman E, Peeri M, Naor A, Shachar E, Burstein D, Lazary R, Gophna U, Pupko T, Kupiec M (2011) Native homing endonucleases can target conserved genes in humans and in animal models. Nucleic Acids Res 39:6646–6659. doi: 10.1093/nar/gkr242 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Benjamin R, Berges BK, Solis-Leal A, Igbinedion O, Strong CL, Schiller MR (2016) TALEN gene editing takes aim on HIV. Hum Genet. doi: 10.1007/s00439-016-1678-2 PubMedGoogle Scholar
  6. Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P (2013) Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther J Am Soc Gene Ther 21:1889–1897. doi: 10.1038/mt.2013.170 CrossRefGoogle Scholar
  7. Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (2014) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42:2591–2601. doi: 10.1093/nar/gkt1224 PubMedCrossRefGoogle Scholar
  8. Boldogh I, Albrecht T, Porter DD (1996) Persistent viral infections. In: Baron S (ed) Medical microbiology, 4th edn. Galveston (TX)Google Scholar
  9. Brennan TA, Wilson JM (2014) The special case of gene therapy pricing. Nat Biotechnol 32:874–876. doi: 10.1038/nbt.3003 PubMedCrossRefGoogle Scholar
  10. Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, Zheng Y, Peng X, Li J, Yuan Z (2014) An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther J Am Soc Gene Ther 22:303–311. doi: 10.1038/mt.2013.212 CrossRefGoogle Scholar
  11. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther J Am Soc Gene Ther 16:352–358. doi: 10.1038/sj.mt.6300357 CrossRefGoogle Scholar
  12. Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP (2010) Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther J Am Soc Gene Ther 18:947–954. doi: 10.1038/mt.2010.20 CrossRefGoogle Scholar
  13. Dandri M, Lutgehetmann M (2014) Mouse models of hepatitis B and delta virus infection. J Immunol Methods 410:39–49. doi: 10.1016/j.jim.2014.03.002 PubMedCrossRefGoogle Scholar
  14. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615. doi: 10.1016/S1470-2045(12)70137-7 PubMedCrossRefGoogle Scholar
  15. De Silva Feelixge HS, Stone D, Pietz HL, Roychoudhury P, Greninger AL, Schiffer JT, Aubert M, Jerome KR (2016) Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antiviral Res 126:90–98. doi: 10.1016/j.antiviral.2015.12.007 PubMedCrossRefGoogle Scholar
  16. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683. doi: 10.1056/NEJMoa1106152 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ding W, Hu Z, Zhu D, Jiang X, Yu L, Wang X, Zhang C, Wang L, Ji T, Li K, He D, Xia X, Liu D, Zhou J, Ma D, Wang H (2014) Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res Off J Am Assoc Cancer Res 20:6495–6503. doi: 10.1158/1078-0432.CCR-14-0250 CrossRefGoogle Scholar
  18. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S (2015) Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 118:110–117. doi: 10.1016/j.antiviral.2015.03.015 PubMedCrossRefGoogle Scholar
  19. Egli A, Infanti L, Dumoulin A, Buser A, Samaridis J, Stebler C, Gosert R, Hirsch HH (2009) Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect Dis 199:837–846PubMedCrossRefGoogle Scholar
  20. Elbadawy HM, Gailledrat M, Desseaux C, Salvalaio G, Di Iorio E, Ferrari B, Bertolin M, Barbaro V, Parekh M, Gayon R, Munegato D, Franchin E, Calistri A, Palu G, Parolin C, Ponzin D, Ferrari S (2014) Gene transfer of integration defective anti-HSV-1 meganuclease to human corneas ex vivo. Gene Ther 21:272–281. doi: 10.1038/gt.2013.82 PubMedCrossRefGoogle Scholar
  21. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121. doi: 10.1038/nmeth.2681 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ferrari C (2015) HBV and the immune response. Liver Int Off J Int Assoc Study Liver 35(Suppl 1):121–128. doi: 10.1111/liv.12749 Google Scholar
  23. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–186. doi: 10.1038/nbt.3101 PubMedCrossRefGoogle Scholar
  24. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826. doi: 10.1038/nbt.2623 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. doi: 10.1038/nbt.2808 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29:816–823. doi: 10.1038/nbt.1948 PubMedCrossRefGoogle Scholar
  27. Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, de The G (1985) Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2:407–410PubMedCrossRefGoogle Scholar
  28. Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, Hoen AG, Christensen BC, Kelsey KT, Marsit CJ, Pawlita M, Karagas MR (2016) Seroepidemiology of human polyomaviruses in a US population. Am J Epidemiol 183:61–69. doi: 10.1093/aje/kwv155 PubMedCrossRefGoogle Scholar
  29. Gouble A, Smith J, Bruneau S, Perez C, Guyot V, Cabaniols JP, Leduc S, Fiette L, Ave P, Micheau B, Duchateau P, Paques F (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8:616–622. doi: 10.1002/jgm.879 PubMedCrossRefGoogle Scholar
  30. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61:S45–S57. doi: 10.1016/j.jhep.2014.07.027 PubMedCrossRefGoogle Scholar
  31. Grosse S, Huot N, Mahiet C, Arnould S, Barradeau S, Clerre DL, Chion-Sotinel I, Jacqmarcq C, Chapellier B, Ergani A, Desseaux C, Cedrone F, Conseiller E, Paques F, Labetoulle M, Smith J (2011) Meganuclease-mediated inhibition of HSV1 infection in cultured cells. Mol Ther J Am Soc Gene Ther 19:694–702. doi: 10.1038/mt.2010.302 CrossRefGoogle Scholar
  32. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435. doi: 10.1038/nmeth.2845 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gupta T, Robles MT, Schowalter RM, Buck CB, Pipas JM (2016) Expression of the small T antigen of lymphotropic papovavirus is sufficient to transform primary mouse embryo fibroblasts. Virology 487:112–120. doi: 10.1016/j.virol.2015.10.003 PubMedCrossRefGoogle Scholar
  34. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110:15644–15649. doi: 10.1073/pnas.1313587110 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, Zhang C, Wang L, Ji T, Liu D, He D, Xia X, Zhu T, Wei J, Wu P, Wang C, Xi L, Gao Q, Chen G, Liu R, Li K, Li S, Wang S, Zhou J, Ma D, Wang H (2014a) TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Investig. doi: 10.1172/JCI78206 Google Scholar
  36. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H (2014b) Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int 2014:612823. doi: 10.1155/2014/612823 PubMedPubMedCentralGoogle Scholar
  37. Kane M, Golovkina T (2010) Common threads in persistent viral infections. J Virol 84:4116–4123. doi: 10.1128/JVI.01905-09 PubMedCrossRefGoogle Scholar
  38. Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Luth S, Buchholz F, Schulze zur Wiesch J, Hauber J (2015) CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 5:13734. doi: 10.1038/srep13734 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR (2014a) Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476C:196–205. doi: 10.1016/j.virol.2014.12.001 Google Scholar
  40. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR (2014b) Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88:11965–11972. doi: 10.1128/JVI.01879-14 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kennedy EM, Kornepati AV, Mefferd AL, Marshall JB, Tsai K, Bogerd HP, Cullen BR (2015) Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic. Methods 91:82–86. doi: 10.1016/j.ymeth.2015.08.012 PubMedCrossRefGoogle Scholar
  42. Kim D, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. doi: 10.1101/gr.199588.115 PubMedPubMedCentralGoogle Scholar
  43. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. doi: 10.1038/nature16526 PubMedPubMedCentralGoogle Scholar
  44. Knowles WA (2006) Discovery and epidemiology of the human polyomaviruses BK virus (BKV) and JC virus (JCV). Adv Exp Med Biol 577:19–45. doi: 10.1007/0-387-32957-9_2 PubMedCrossRefGoogle Scholar
  45. Koelle DM, Corey L (2003) Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 16:96–113PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kondo T, Kono H, Miyamoto N, Yoshida R, Toki H, Matsumoto I, Hara M, Inoue H, Inatsuki A, Funatsu T et al (1989) Age- and sex-specific cumulative rate and risk of ATLL for HTLV-I carriers. Int J Cancer 43:1061–1064PubMedCrossRefGoogle Scholar
  47. Kutok JL, Wang F (2006) Spectrum of Epstein–Barr virus-associated diseases. Annu Rev Pathol 1:375–404. doi: 10.1146/annurev.pathol.1.110304.100209 PubMedCrossRefGoogle Scholar
  48. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221. doi: 10.1038/nature10177 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ (2014) The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3:e186. doi: 10.1038/mtna.2014.38 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liu X, Hao R, Chen S, Guo D, Chen Y (2015a) Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 96:2252–2261. doi: 10.1099/vir.0.000159 PubMedCrossRefGoogle Scholar
  51. Liu YC, Cai ZM, Zhang XJ (2015b) Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 genes inhibits proliferation and induces apoptosis in -transformed keratinocytes. Asian J Androl. doi: 10.4103/1008-682X.157399 Google Scholar
  52. Longnecker RM, Kieff E, Cohen JI (2013) Epstein–Barr virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott, Williams, and Wilkins, Philadelphia, pp 1898–1959Google Scholar
  53. Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM (2015) Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One 10:e114989. doi: 10.1371/journal.pone.0114989 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0 PubMedCrossRefGoogle Scholar
  55. Marquitz AR, Mathur A, Nam CS, Raab-Traub N (2011) The Epstein–Barr virus BART microRNAs target the pro-apoptotic protein Bim. Virology 412:392–400. doi: 10.1016/j.virol.2011.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mertz GJ, Benedetti J, Ashley R, Selke SA, Corey L (1992) Risk factors for the sexual transmission of genital herpes. Ann Intern Med 116:197–202PubMedCrossRefGoogle Scholar
  57. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E (2015) Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61:77–87. doi: 10.1002/hep.27259 PubMedCrossRefGoogle Scholar
  58. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785. doi: 10.1038/nbt1319 PubMedCrossRefGoogle Scholar
  59. Mino T, Mori T, Aoyama Y, Sera T (2013) Gene- and protein-delivered zinc finger-staphylococcal nuclease hybrid for inhibition of DNA replication of human papillomavirus. PLoS One 8:e56633. doi: 10.1371/journal.pone.0056633 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mino T, Mori T, Aoyama Y, Sera T (2014) Inhibition of DNA replication of human papillomavirus by using zinc finger-single-chain Foki dimer hybrid. Mol Biotechnol. doi: 10.1007/s12033-014-9751-3 PubMedGoogle Scholar
  61. Morrison C (2015) $1-million price tag set for Glybera gene therapy. Nat Biotechnol 33:217–218. doi: 10.1038/nbt0315-217 PubMedCrossRefGoogle Scholar
  62. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23(5):644–650PubMedCrossRefGoogle Scholar
  63. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773. doi: 10.1093/nar/gku305 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nicoll MP, Proenca JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705. doi: 10.1111/j.1574-6976.2011.00320.x PubMedPubMedCentralCrossRefGoogle Scholar
  65. Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M (1986) HTLV-I associated myelopathy, a new clinical entity. Lancet 1:1031–1032PubMedCrossRefGoogle Scholar
  66. Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH (1971) Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1:1257–1260PubMedCrossRefGoogle Scholar
  67. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770. doi: 10.1038/nmeth.1670 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pereyra A, Herenu C (2013) Gene delivery Systems. In: Romamowski V (ed) Current issues in molecular virology—viral genetics and biotechnological applications. INTECH, RijekaGoogle Scholar
  69. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455. doi: 10.1016/j.cell.2014.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419PubMedPubMedCentralCrossRefGoogle Scholar
  71. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 112:6164–6169. doi: 10.1073/pnas.1422340112 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Qi Z, Li G, Hu H, Yang C, Zhang X, Leng Q, Xie Y, Yu D, Gao Y, Lan K, Deng Q (2014) Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice. J Virol 88:8045–8056. doi: 10.1128/JVI.01024-14 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rahman SH, Maeder ML, Joung JK, Cathomen T (2011) Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther 22(8):925–933PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN (2015) CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 5:10833. doi: 10.1038/srep10833 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. doi: 10.1038/nature14299 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Riu E, Grimm D, Huang Z, Kay MA (2005) Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. Hum Gene Ther 16:558–570. doi: 10.1089/hum.2005.16.558 PubMedCrossRefGoogle Scholar
  77. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69. doi: 10.1038/nmeth.1542 PubMedCrossRefGoogle Scholar
  79. Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR (2012) Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol 86:8920–8936. doi: 10.1128/JVI.00052-12 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schiffer JT, Swan DA, Stone D, Jerome KR (2013) Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach. PLoS Comput Biol 9:e1003131. doi: 10.1371/journal.pcbi.1003131 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Seeger C, Sohn JA (2014) Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 3:e216. doi: 10.1038/mtna.2014.68 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88. doi: 10.1126/science.aad5227 PubMedCrossRefGoogle Scholar
  83. Smith JS, Robinson NJ (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186(Suppl 1):S3–S28. doi: 10.1086/343739 PubMedCrossRefGoogle Scholar
  84. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15PubMedPubMedCentralCrossRefGoogle Scholar
  85. Subak-Sharpe JH, Dargan DJ (1998) HSV molecular biology: general aspects of herpes simplex virus molecular biology. Virus Genes 16:239–251PubMedCrossRefGoogle Scholar
  86. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106. doi: 10.1038/nbt.3055 PubMedCrossRefGoogle Scholar
  87. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793. doi: 10.1038/nbt1317 PubMedCrossRefGoogle Scholar
  88. Tanaka A, Takeda S, Kariya R, Matsuda K, Urano E, Okada S, Komano J (2013) A novel therapeutic molecule against HTLV-1 infection targeting provirus. Leukemia 27:1621–1627. doi: 10.1038/leu.2013.46 PubMedCrossRefGoogle Scholar
  89. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910. doi: 10.1056/NEJMoa1300662 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Touchot N, Flume M (2015) The payers’ perspective on gene therapies. Nat Biotechnol 33:902–904. doi: 10.1038/nbt.3332 PubMedCrossRefGoogle Scholar
  91. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197. doi: 10.1038/nbt.3117 PubMedCrossRefGoogle Scholar
  92. Wang J, Quake SR (2014) RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA 111:13157–13162. doi: 10.1073/pnas.1410785111 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM (2015) Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 21:9554–9565. doi: 10.3748/wjg.v21.i32.9554 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang G, Zhao N, Berkhout B, Das AT (2016a) CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther J Am Soc Gene Ther. doi: 10.1038/mt.2016.24 Google Scholar
  95. Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C (2016b) CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15:481–489. doi: 10.1016/j.celrep.2016.03.042 PubMedCrossRefGoogle Scholar
  96. Weber ND, Aubert M, Dang CH, Stone D, Jerome KR (2014a) DNA cleavage enzymes for treatment of persistent viral infections: recent advances and the pathway forward. Virology 454–455:353–361. doi: 10.1016/j.virol.2013.12.037 PubMedCrossRefGoogle Scholar
  97. Weber ND, Stone D, Sedlak RH, De Silva Feelixge HS, Roychoudhury P, Schiffer JT, Aubert M, Jerome KR (2014b) AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 9:e97579. doi: 10.1371/journal.pone.0097579 PubMedPubMedCentralCrossRefGoogle Scholar
  98. White RR, Sung P, Vestal CG, Benedetto G, Cornelio N, Richardson C (2013) Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS One 8:e84379. doi: 10.1371/journal.pone.0084379 PubMedPubMedCentralCrossRefGoogle Scholar
  99. WHO (2015a) Hepatitis B Fact Sheet Number 204. http://www.who.int/mediacentre/factsheets/fs204/en/
  100. WHO (2015b) Hepatitis C Fact Sheet Number 164. http://www.who.int/mediacentre/factsheets/fs164/en/
  101. WHO (2015c) Human papillomavirus (HPV) and cervical cancer Fact Sheet Number 380. http://www.who.int/mediacentre/factsheets/fs380/en/
  102. Wolfs JM, DaSilva M, Meister SE, Wang X, Schild-Poulter C, Edgell DR (2014) MegaTevs: single-chain dual nucleases for efficient gene disruption. Nucleic Acids Res 42:8816–8829. doi: 10.1093/nar/gku573 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K (2015) CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS One 10:e0136046. doi: 10.1371/journal.pone.0136046 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xu F, Schillinger JA, Sternberg MR, Johnson RE, Lee FK, Nahmias AJ, Markowitz LE (2002) Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J Infect Dis 185:1019–1024. doi: 10.1086/340041 PubMedCrossRefGoogle Scholar
  105. Yoshio S, Kanto T (2016) Host-virus interactions in hepatitis B and hepatitis C infection. J Gastroenterol 51:409–420. doi: 10.1007/s00535-016-1183-3 PubMedCrossRefGoogle Scholar
  106. Yu L, Wang X, Zhu D, Ding W, Wang L, Zhang C, Jiang X, Shen H, Liao S, Ma D, Hu Z, Wang H (2015) Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. Onco Targets Ther 8:37–44. doi: 10.2147/OTT.S64092 PubMedGoogle Scholar
  107. Yuen KS, Chan CP, Wong NH, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH, Jin DY (2014) CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells. J Gen Virol. doi: 10.1099/jgv.0.000012 Google Scholar
  108. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y (2014) In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 450:1422–1426. doi: 10.1016/j.bbrc.2014.07.014 PubMedCrossRefGoogle Scholar
  109. Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X (2015) Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. doi: 10.1038/gt.2015.2 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Stone
    • 1
  • Nixon Niyonzima
    • 1
    • 3
  • Keith R. Jerome
    • 1
    • 2
  1. 1.Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA
  3. 3.Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations