Advertisement

Human Genetics

, Volume 135, Issue 6, pp 591–601 | Cite as

Clinical genomics: from a truly personal genome viewpoint

  • James R. Lupski
Perspective
Part of the following topical collections:
  1. Exome Sequencing

Abstract

The path to Clinical Genomics is punctuated by our understanding of what types of DNA structural and sequence variation contribute to disease, the many technical challenges to detect such variation genome-wide, and the initial struggles to interpret personal genome variation in the context of disease. This review describes one perspective of the development of clinical genomics; whereas the experimental challenges, and hurdles to overcoming them, might be deemed readily apparent, the non-technical issues for clinical implementation may be less obvious. Some of these latter challenges, including: (1) informed consent, (2) privacy, (3) what constitutes potentially pathogenic variation contributing to disease, (4) disease penetrance in populations, and (5) the genetic architecture of disease, and the struggles sometimes faced for solutions, are highlighted using illustrative examples.

Keywords

Copy Number Variation Whole Genome Sequencing Whole Exome Sequencing Persistent Vegetative State Personal Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Thanks to the Clinical Genomics pioneers, and to my colleagues in genetics and genomics at Baylor College of Medicine for their continued spirit of collaboration and collegiality. My gratitude is also extended to all members past and present in the Lupski Lab for their efforts and insights. The Lupski Laboratory is currently funded by the National Institute of Neurological Disease and Stroke (NINDS, R01NS058529), the National Institute of General Medical Sciences (NIGMS, R01GM106373), the National Human Genome Research Institute/National Heart Lung and Blood Institute Baylor Hopkins Center for Mendelian Genomics (NHGRI/NHLBI, U54HG006542), and the Smith Magenis Research Foundation; this work was also supported in part by NHGRI (U54HG003723) and the Intellectual and Developmental Disabilities Research Center, IDDRC (NICHD HD083092, Clinical Translational Core).

Compliance with ethical standards

Conflict of interest

J. R. L. is a paid consultant for Regeneron Pharmaceuticals, holds stock ownership in 23andMe and Lasergen, Inc., is on the scientific advisory board of Baylor Miraca Genetics Laboratories, and is a co-inventor on United States and European patents related to molecular diagnostics. The Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular genetic testing offered at the Baylor Miraca Genetics Laboratories (BMGL; http://bmgl.com/).

References

  1. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905CrossRefPubMedGoogle Scholar
  2. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D’Ascenzo M et al (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol 11:R62CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I et al (2011a) Whole-genome sequencing for optimized patient management. Sci Transl Med 3:87re83CrossRefGoogle Scholar
  4. Bainbridge MN, Wang M, Wu Y, Newsham I, Muzny DM, Jefferies JL et al (2011b) Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol 12:R68CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J et al (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A. 140:2757–2767CrossRefPubMedGoogle Scholar
  6. Bejjani BA, Saleki R, Ballif BC, Rorem EA, Sundin K, Theisen A et al (2005) Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 134:259–267CrossRefPubMedGoogle Scholar
  7. Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN et al (2010) Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31:1326–1342CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boone PM, Soens ZT, Campbell IM, Stankiewicz P, Cheung SW, Patel A et al (2013a) Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med. 15:45–54CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boone PM, Campbell IM, Baggett BC, Soens ZT, Rao MM, Hixson PM et al (2013b) Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res 23:1383–1394CrossRefPubMedPubMedCentralGoogle Scholar
  10. Campbell IM, Yuan B, Robberecht C, Pfundt R, Szafranski P, McEntagart ME et al (2014a) Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 95:173–182CrossRefPubMedPubMedCentralGoogle Scholar
  11. Campbell IM, Stewart JR, James RA, Lupski JR, Stankiewicz P, Olofsson P et al (2014b) Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 95:345–359CrossRefPubMedPubMedCentralGoogle Scholar
  12. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR (2015) Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 31:382–392CrossRefPubMedGoogle Scholar
  13. Carvalho CM, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17:224–238CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carvalho CM, Pfundt R, King DA, Lindsay SJ, Zuccherato LW, Macville MV et al (2015) Absence of heterozygosity due to template switching during replicative rearrangements. Am J Hum Genet 96:555–564CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A et al (2005) Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 7:422–432CrossRefPubMedGoogle Scholar
  16. Cheung SW, Shaw CA, Scott DA, Patel A, Sahoo T, Bacino CA et al (2007) Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 143A:1679–1686CrossRefPubMedGoogle Scholar
  17. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD et al (2015) The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 97:199–215CrossRefPubMedPubMedCentralGoogle Scholar
  18. Daly AF, Yuan B, Fina F, Caberg JH, Trivellin G, Rostomyan L et al (2016) Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer 23:221–233CrossRefPubMedGoogle Scholar
  19. English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S, Ritter DI et al (2015) Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genom 16:286CrossRefGoogle Scholar
  20. Gambin T, Jhangiani SN, Below JE, Campbell IM, Wiszniewski W, Muzny DM et al (2015) Secondary findings and carrier test frequencies in a large multiethnic sample. Genome Med. 7:54CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L et al (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 12:1169–1183CrossRefPubMedGoogle Scholar
  23. Green RC, Lupski JR, Biesecker LG (2013a) Reporting genomic sequencing results to ordering clinicians: incidental, but not exceptional. JAMA 310:365–366CrossRefPubMedPubMedCentralGoogle Scholar
  24. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL et al (2013b) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 15:565–574CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hildebrandt G, Holler E, Woenkhaus M, Quarch G, Reichle A, Schalke B et al (2000) Acute deterioration of Charcot–Marie–Tooth disease IA (CMT IA) following 2 mg of vincristine chemotherapy. Ann Oncol 11:743–747CrossRefPubMedGoogle Scholar
  26. International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  27. Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z et al (2015) Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron 88:499–513CrossRefPubMedGoogle Scholar
  28. Klitzman R, Appelbaum PS, Chung W (2013) Return of secondary genomic findings vs patient autonomy: implications for medical care. JAMA 310:369–370CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kremer LS, Distelmaier F, Alhaddad B, Hempel M, Iuso A, Kupper C et al (2016) Bi-allelic truncating mutations in TANGO2 cause infancy-onset recurrent metabolic crises with encephalocardiomyopathy. Am J Hum Genet 98:358–362CrossRefPubMedGoogle Scholar
  30. Lalani SR, Liu P, Rosenfeld JA, Watkin LB, Chiang T, Leduc MS et al (2016) Recurrent muscle weakness with rhabdomyolysis, metabolic crises, and cardiac arrhythmia due to bi-allelic TANGO2 mutations. Am J Hum Genet 98:347–357CrossRefPubMedGoogle Scholar
  31. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  32. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F et al (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312:1880–1887CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW et al (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44:1370–1374CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lifton RP (2010) Individual genomes on the horizon. N Engl J Med 362:1235–1236CrossRefPubMedGoogle Scholar
  35. Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE, Dharmadhikari AV et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lupski JR (2009) Genomic disorders ten years on. Genome Med 1:42CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lupski JR (2012) Digenic inheritance and Mendelian disease. Nat Genet 44:1291–1292CrossRefPubMedGoogle Scholar
  38. Lupski JR (2015) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol Mutagen 56:419–436CrossRefGoogle Scholar
  39. Lupski JR, Timmerman V (2006) The CMT1A duplication—a historical perspective viewed from two sides of an ocean. In: Lupski JR, Stankiewicz P (eds) Genomic disorders: the genomic basis of disease, Chapter 1. Humana Press Inc, Totowa, pp 3–17CrossRefGoogle Scholar
  40. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L et al (2010) Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N Engl J Med 362:1181–1191CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA (2011) Clan genomics and the complex architecture of human disease. Cell 147:32–43CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lupski JR, Gonzaga-Jauregui C, Yang Y, Bainbridge MN, Jhangiani S, Buhay CJ et al (2013) Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot–Marie–Tooth neuropathy. Genome Med. 5:57CrossRefPubMedPubMedCentralGoogle Scholar
  43. Maher CA, Wilson RK (2012) Chromothripsis and human disease: piecing together the shattering process. Cell 148:29–32CrossRefPubMedPubMedCentralGoogle Scholar
  44. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralGoogle Scholar
  45. Mirzaa GM, Campbell CD, Solovieff N, Goold CP, Jansen LA, Menon S, Timms AE et al (2016) Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. doi: 10.1001/jamaneurol.2016.0363 PubMedGoogle Scholar
  46. Nakamura T, Hashiguchi A, Suzuki S, Uozumi K, Tokunaga S, Takashima H (2012) Vincristine exacerbates asymptomatic Charcot–Marie–tooth disease with a novel EGR2 mutation. Neurogenetics. 13:77–82CrossRefPubMedGoogle Scholar
  47. Pham J, Shaw C, Pursley A, Hixson P, Sampath S, Roney E et al (2014) Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet 22:969–978CrossRefPubMedPubMedCentralGoogle Scholar
  48. Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M et al (2015) The Matchmaker Exchange: a platform for rare disease gene discovery. Hum Mutat 36:915–921CrossRefPubMedGoogle Scholar
  49. Reid JG, Carroll A, Veeraraghavan N, Dahdouli M, Sundquist A, English A et al (2014) Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC Bioinform 15:30CrossRefGoogle Scholar
  50. Ross LF, Rothstein MA, Clayton EW (2013) Mandatory extended searches in all genome sequencing: “incidental findings”, patient autonomy, and shared decision making. JAMA 310:367–368CrossRefPubMedGoogle Scholar
  51. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124CrossRefPubMedGoogle Scholar
  52. Schaaf CP, Scott DA, Wiszniewska J, Beaudet AL (2011) Identification of incestuous parental relationships by SNP-based DNA microarrays. Lancet 377:555–556 (Erratum 377:812 (2011)) Google Scholar
  53. Scheuner MT, Peredo J, Benkendorf J, Bowdish B, Feldman G, Fleisher L et al (2015) Reporting genomic secondary findings: aCMG members weigh. Genet Med. 17:27–35CrossRefPubMedGoogle Scholar
  54. Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR et al (2010) Complete Khoisan and Bantu genomes from southern Africa. Nature 463:943–947CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sobreira N, Schiettecatte F, Valle D, Hamosh A (2015) GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 36:928–930CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spence JE, Perciaccante RG, Greig GM, Willard HF, Ledbetter DH, Hejtmancik JF et al (1988) Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42:217–226PubMedPubMedCentralGoogle Scholar
  57. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455CrossRefPubMedGoogle Scholar
  58. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  59. Warburton D (1988) Uniparental disomy: a rare consequence of the high rate of aneuploidy in human gametes. Am J Hum Genet 42:215–216PubMedPubMedCentralGoogle Scholar
  60. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876CrossRefPubMedGoogle Scholar
  61. White J, Mazzeu JF, Hoischen A, Jhangiani SN, Gambin T, Alcino MC et al (2015) DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome. Am J Hum Genet 96:612–622CrossRefPubMedPubMedCentralGoogle Scholar
  62. White JJ, Mazzeu JF, Hoischen A, Bayram Y, Withers M, Gezdirici A et al (2016) DVL3 alleles resulting in a− 1 frameshift of the last exon mediate autosomal-dominant Robinow syndrome. Am J Hum Genet 98:553–561CrossRefPubMedGoogle Scholar
  63. Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN et al (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 22:79–87CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M et al (2015) TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 372:341–350CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA et al (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502–1511CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y et al (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312:1870–1879CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Department of PediatricsBaylor College of MedicineHoustonUSA
  3. 3.Human Genome Sequencing CenterBaylor College of MedicineHoustonUSA
  4. 4.Texas Children’s HospitalHoustonUSA

Personalised recommendations