Advertisement

Human Genetics

, Volume 135, Issue 7, pp 779–795 | Cite as

Biological findings from the PheWAS catalog: focus on connective tissue-related disorders (pelvic floor dysfunction, abdominal hernia, varicose veins and hemorrhoids)

  • Lyubov E. Salnikova
  • Maryam B. Khadzhieva
  • Dmitry S. Kolobkov
Original Investigation

Abstract

Pelvic floor dysfunction, specifically genital prolapse (GP) and stress urinary inconsistency (SUI) presumably co-occur with other connective tissue disorders such as hernia, hemorrhoids, and varicose veins. Observations on non-random coexistence of these disorders have never been summarized in a meta-analysis. The performed meta-analysis demonstrated that varicose veins and hernia are associated with GP. Disease connections on the molecular level may be partially based on shared genetic susceptibility. A unique opportunity to estimate shared genetic susceptibility to disorders is provided by a PheWAS (phenome-wide association study) designed to utilize GWAS data concurrently to many phenotypes. We searched the PheWAS Catalog, which includes the results of the PheWAS study with P value < 0.05, for genes associated with GP, SUI, abdominal hernia, varicose veins and hemorrhoids. We found pronounced signals for the associations of the SLC2A9 gene with SUI (P = 6.0e−05) and the MYH9 gene with varicose veins of lower extremity (P = 0.0001) and hemorrhoids (P = 0.0007). The comparison of the PheWAS Catalog and the NHGRI Catalog data revealed enrichment of genes associated with bone mineral density in GP and with activated partial thromboplastin time in varicose veins of lower extremity. In cross-phenotype associations, genes responsible for peripheral nerve functions seem to predominate. This study not only established novel biologically plausible associations that may warrant further studies but also exemplified an effective use of the PheWAS Catalog data.

Keywords

Stress Urinary Incontinence Pelvic Organ Prolapse Hemorrhoid Stress Incontinence Activate Partial Thromboplastin Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, Project 15-04-02378.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2016_1672_MOESM1_ESM.pdf (6 kb)
Supplementary material 1 (PDF 7 kb)
439_2016_1672_MOESM2_ESM.tiff (61 kb)
Supplementary material 1 (TIFF 62 kb)
439_2016_1672_MOESM3_ESM.tiff (733 kb)
Supplementary material 1 (TIFF 733 kb)
439_2016_1672_MOESM4_ESM.pdf (72 kb)
Supplementary material 1 (PDF 73 kb)
439_2016_1672_MOESM5_ESM.pdf (21 kb)
Supplementary material 1 (PDF 22 kb)
439_2016_1672_MOESM6_ESM.xls (45 kb)
Supplementary material 1 (XLS 45 kb)
439_2016_1672_MOESM7_ESM.xls (119 kb)
Supplementary material 1 (XLS 119 kb)
439_2016_1672_MOESM8_ESM.pdf (105 kb)
Supplementary material 1 (PDF 105 kb)
439_2016_1672_MOESM9_ESM.pdf (26 kb)
Supplementary material 1 (PDF 26 kb)

References

  1. Abraham D, Ponticos M, Nagase H (2005) Connective tissue remodeling: cross-talk between endothelins and matrix metalloproteinases. Curr Vasc Pharmacol 3:369–379. doi: 10.2174/157016105774329480#sthash.7srLfjSU.dpuf PubMedCrossRefGoogle Scholar
  2. Al-Batayneh KM, Al Battah RM (2008) Genetic variation in the proximal 5′ UTR of FOXC2 gene in varicose veins and hemorrhoids patients. Int J Integr Biol 4:78–80Google Scholar
  3. Allen-Brady K, Norton PA, Farnham JM, Teerlink C, Cannon-Albright LA (2009) Significant linkage evidence for a predisposition gene for pelvic floor disorders on chromosome 9q21. Am J Hum Genet 84:678–682. doi: 10.1016/j.ajhg.2009.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen-Brady K, Cannon-Albright L, Farnham JM, Teerlink C, Vierhout ME, van Kempen LC, Kluivers KB, Norton PA (2011) Identification of six loci associated with pelvic organ prolapse using genome-wide association analysis. Obstet Gynecol 118:1345–1353. doi: 10.1097/AOG.0b013e318236f4b5 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allen-Brady K, Cannon-Albright LA, Farnham JM, Norton PA (2015) Evidence for pelvic organ prolapse predisposition genes on chromosomes 10 and 17. Am J Obstet Gynecol 212(771):e1–e7. doi: 10.1016/j.ajog.2014.12.037 PubMedGoogle Scholar
  6. Altman D, Forsman M, Falconer C, Lichtenstein P (2008) Genetic influence on stress urinary incontinence and pelvic organ prolapse. Eur Urol 54:918–922. doi: 10.1016/j.eururo.2007.12.004 PubMedCrossRefGoogle Scholar
  7. Amato G, Agrusa A, Romano G, Salamone G, Gulotta G, Silvestri F, Bussani R (2012) Muscle degeneration in inguinal hernia specimens. Hernia 16:327–331. doi: 10.1007/s10029-011-0890-1 PubMedCrossRefGoogle Scholar
  8. Arrondel C, Vodovar N, Knebelmann B, Grünfeld JP, Gubler MC, Antignac C, Heidet L (2002) Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndrome. J Am Soc Nephrol 13:65–74PubMedGoogle Scholar
  9. Baessler K, Schuessler B (2006) Anatomy of the sigmoid colon, rectum, and the rectovaginal pouch in women with enterocele and anterior rectal wall procidentia. Clin Anat 19:125–129. doi: 10.1002/ca.20232 PubMedCrossRefGoogle Scholar
  10. Barber MD, Maher C (2013) Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J 24:1783–1790. doi: 10.1007/s00192-013-2169-9 PubMedCrossRefGoogle Scholar
  11. Beighton H, Grahame R, Bird HA (2012) Hypermobility of joints. Springer, London, p 204. doi:  10.1007/978-1-84882-085-2_2
  12. Bharath V, Kahn SR, Lazo-Langner A (2014) Genetic polymorphisms of vein wall remodeling in chronic venous disease: a narrative and systematic review. Blood 124:1242–1250. doi: 10.1182/blood-2014-03-558478 PubMedCrossRefGoogle Scholar
  13. Boreham MK, Wai CY, Miller RT, Schaffer JI, Word RA (2002) Morphometric properties of the posterior vaginal wall in women with pelvic organ prolapse. Am J Obstet Gynecol 187:1501–1508. doi: 10.1067/mob.2002.130005 PubMedCrossRefGoogle Scholar
  14. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797. doi: 10.1101/gr.137323.112 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Braekken IH, Majida M, Ellström Engh M, Holme IM, Bø K (2009) Pelvic floor function is independently associated with pelvic organ prolapse. BJOG 116:1706–1714. doi: 10.1111/j.1471-0528.2009.02379.x PubMedCrossRefGoogle Scholar
  16. Brake M, Lim CS, Shepherd AC, Shalhoub J, Davies AH (2013) Pathogenesis and etiology of recurrent varicose veins. J Vasc Surg 57:860–868. doi: 10.1016/j.jvs.2012.10.102 PubMedCrossRefGoogle Scholar
  17. Busacchi P, Perri T, Paradisi R, Oliverio C, Santini D, Guerrini S, Barbara G, Stanghellini V, Corinaldesi R, De Giorgio R (2004) Abnormalities of somatic peptide-containing nerves supplying the pelvic floor of women with genitourinary prolapse and stress urinary incontinence. Urology 63:591–595. doi: 10.1016/j.urology.2003.09.017 PubMedCrossRefGoogle Scholar
  18. Campeau L, Gorbachinsky I, Badlani GH, Andersson KE (2011) Pelvic floor disorders: linking genetic risk factors to biochemical changes. BJU Int 108:1240–1247. doi: 10.1111/j.1464-410X.2011.10385.x PubMedCrossRefGoogle Scholar
  19. Cartwright R, Kirby AC, Tikkinen KA, Mangera A, Thiagamoorthy G, Rajan P, Pesonen J, Ambrose C, Gonzalez-Maffe J, Bennett P, Palmer T, Walley A, Järvelin MR, Chapple C, Khullar V (2015) Systematic review and metaanalysis of genetic association studies of urinary symptoms and prolapse in women. Am J Obstet Gynecol 212(199):e1–e24. doi: 10.1016/j.ajog.2014.08.005 PubMedGoogle Scholar
  20. Chen H, Jawahar S, Qian Y, Duong Q, Chan G, Parker A, Meyer JM, Moore KJ, Chayen S, Gross DJ, Glaser B, Permutt MA, Fricker LD (2001) Missense polymorphism in the human carboxypeptidase E gene alters enzymatic activity. Hum Mutat 18:120–131. doi: 10.1002/humu.1161 PubMedCrossRefGoogle Scholar
  21. Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  22. Coyne KS, Kvasz M, Ireland AM, Milsom I, Kopp ZS, Chapple CR (2012) Urinary incontinence and its relationship to mental health and health-related quality of life in men and women in Sweden, the United Kingdom, and the United States. Eur Urol 61:88–95. doi: 10.1016/j.eururo.2011.07.049 PubMedCrossRefGoogle Scholar
  23. Craig TJ, Henley JM (2012) Protein SUMOylation in spine structure and function. Curr Opin Neurobiol 22:480–487. doi: 10.1016/j.conb.2011.10.017 PubMedCrossRefGoogle Scholar
  24. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, Greenway MJ, Bradley DG, Traynor BJ, Hardiman O (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774. doi: 10.1093/hmg/ddm361 PubMedCrossRefGoogle Scholar
  25. Darvall KA, Sam RC, Adam DJ, Silverman SH, Fegan CD, Bradbury AW (2009) Higher prevalence of thrombophilia in patients with varicose veins and venous ulcers than controls. J Vasc Surg 49:1235–1241. doi: 10.1016/j.jvs.2008.12.017 PubMedCrossRefGoogle Scholar
  26. de Boer TA, Slieker-Ten Hove MC, Burger CW, Kluivers KB, Vierhout ME (2011) The prevalence and factors associated with previous surgery for pelvic organ prolapse and/or urinary incontinence in a cross-sectional study in The Netherlands. Eur J Obstet Gynecol Reprod Biol 158:343–349. doi: 10.1016/j.ejogrb.2011.04.029 PubMedCrossRefGoogle Scholar
  27. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford DC (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26:1205–1210. doi: 10.1093/bioinformatics/btq126 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, Field JR, Pulley JM, Ramirez AH, Bowton E, Basford MA, Carrell DS, Peissig PL, Kho AN, Pacheco JA, Rasmussen LV, Crosslin DR, Crane PK, Pathak J, Bielinski SJ, Pendergrass SA, Xu H, Hindorff LA, Li R, Manolio TA, Chute CG, Chisholm RL, Larson EB, Jarvik GP, Brilliant MH, McCarty CA, Kullo IJ, Haines JL, Crawford DC, Masys DR, Roden DM (2013) Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 31:1102–1110. doi: 10.1038/nbt.2749 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI, Keller P, Word RA (2007) Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol 170:578–589. doi: 10.2353/ajpath.2007.060662 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database Group (2015) The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucl Acids Res 43(Database issue):D726–D736. doi: 10.1093/nar/gku967 PubMedCrossRefGoogle Scholar
  31. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501. doi: 10.1038/ng.2249 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Giri A, Wu JM, Ward RM, Hartmann KE, Park AJ, North KE, Graff M, Wallace RB, Bareh G, Qi L, O’Sullivan MJ, Reiner AP, Edwards TL, Velez Edwards DR (2015) Genetic determinants of pelvic organ prolapse among African American and hispanic women in the women’s health initiative. PLoS One 10:e0141647. doi: 10.1371/journal.pone.0141647 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gökbuget D, Pereira JA, Bachofner S, Marchais A, Ciaudo C, Stoffel M, Schulte JH, Suter U (2015) The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nat Commun 6:8584. doi: 10.1038/ncomms9584 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grässel SG (2014) The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 16:485. doi: 10.1186/s13075-014-0485-1 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Grzela T, Bialoszewska A (2010) Genetic risk factors of chronic venous leg ulceration: can molecular screening aid in the prevention of chronic venous insufficiency complications? Mol Med Rep 3:205–211. doi: 10.3892/mmr_00000241 PubMedCrossRefGoogle Scholar
  36. Hafizi L, Mirfeizi Z, Razmjoo N, Keshvari M, Jabbari A, Ashraf H, Yousefi F (2013) The association between women’s pelvic organ prolapse and joint hypermobility. J Pak Med Assoc 63:1152–1156PubMedGoogle Scholar
  37. Harai M, Oura A, Mori M (2014) Risk factors for urinary incontinence in Japanese elderly women. Low Urin Tract Symptoms 6:94–97. doi: 10.1111/luts.12026 PubMedCrossRefGoogle Scholar
  38. Holdstock JM, Dos Santos SJ, Harrison CC, Price BA, Whiteley MS (2015) Haemorrhoids are associated with internal iliac vein reflux in up to one-third of women presenting with varicose veins associated with pelvic vein reflux. Phlebology 30:133–139. doi: 10.1177/0268355514531952 PubMedCrossRefGoogle Scholar
  39. Holzheimer RG (2004) Hemorrhoidectomy: indications and risks. Eur J Med Res 9:18–36PubMedGoogle Scholar
  40. Horng SS, Huang N, Wu SI, Fang YT, Chou YJ, Chou P (2013) The epidemiology of urinary incontinence and it’s influence on quality of life in Taiwanese middle-aged women. Neurourol Urodyn 32:371–376. doi: 10.1002/nau.22302 PubMedCrossRefGoogle Scholar
  41. Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107:3564–3571. doi: 10.1182/blood-2005-07-2961 PubMedCrossRefGoogle Scholar
  42. Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176:1091–1096. doi: 10.1503/cmaj.060410 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Itahana Y, Han R, Barbier S, Lei Z, Rozen S, Itahana K (2015) The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene 34:1799–1810. doi: 10.1038/onc.2014.119 PubMedCrossRefGoogle Scholar
  44. Jorgenson E, Makki N, Shen L, Chen DC, Tian C, Eckalbar WL, Hinds D, Ahituv N, Avins A (2015) A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia. Nat Commun 6:10130. doi: 10.1038/ncomms10130 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucl Acids Res 38(Web Server Issue):W96–W102. doi: 10.1093/nar/gkq418 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Khadzhieva MB, Kolobkov DS, Kamoeva SV, Ivanova AV, Abilev SK, Salnikova LE (2015) Verification of the chromosome region 9q21 association with pelvic organ prolapse using regulomeDBAnnotations. Biomed Res Int 2015:837904. doi: 10.1155/2015/837904 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kim EJ, Chung N, Park SH, Lee KH, Kim SW, Kim JY, Bai SW, Jeon MJ (2013) Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol 189:588–594. doi: 10.1016/j.juro.2012.09.041 PubMedCrossRefGoogle Scholar
  48. Kizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M (2012) Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell 23:1230–1237. doi: 10.1016/j.devcel.2012.10.014 PubMedCrossRefGoogle Scholar
  49. Kurt S, Toz E, Canda MT, Sahin C, Tasyurt A (2014) Can striae be used as a marker for the prediction of pelvic organ prolapse? Eur J Obstet Gynecol Reprod Biol 180:116–119. doi: 10.1016/j.ejogrb.2014.07.003 PubMedCrossRefGoogle Scholar
  50. Lammers K, Lince SL, Spath MA, van Kempen LC, Hendriks JC, Vierhout ME, Kluivers KB (2012) Pelvic organ prolapse and collagen-associated disorders. Int Urogynecol J 23:313–319. doi: 10.1007/s00192-011-1532-y PubMedCrossRefGoogle Scholar
  51. Lee SW, Cho HH, Kim MR, You YO, Kim SY, Hwang YB, Kim JH (2014) Association between pelvic organ prolapse and bone mineral density in postmenopausal women. J Obstet Gynaecol 17:1–5. doi: 10.3109/01443615.2014.961906 Google Scholar
  52. Lim K-C, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25:209–212. doi: 10.1038/76080 PubMedCrossRefGoogle Scholar
  53. Lu C, Huang S, Miclau T, Helms JA, Colnot C (2004) Mepe is expressed during skeletal development and regeneration. Histochem Cell Biol 121:493–499. doi: 10.1007/s00418-004-0653-5 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mandal AK, Mount DB (2015) The molecular physiology of uric acid homeostasis. Annu Rev Physiol 77:323–345. doi: 10.1146/annurev-physiol-021113-170343 PubMedCrossRefGoogle Scholar
  55. McDonald JH (2014) Multiple comparisons. Handbook of biological statistics, 3rd edn. Maryland Sparky, House Publishing, Baltimore, pp 254–260Google Scholar
  56. Memon HU, Handa VL (2013) Vaginal childbirth and pelvic floor disorders. Womens Health Lond Engl 9:265–277. doi: 10.2217/whe.13.17 PubMedCrossRefGoogle Scholar
  57. Merriman TR (2015) An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther 17:98. doi: 10.1186/s13075-015-0609-2 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Miedel A, Tegerstedt G, Maehle-Schmidt M, Nyrén O, Hammarström M (2009) Nonobstetric risk factors for symptomatic pelvic organ prolapse. Obstet Gynecol 113:1089–1097. doi: 10.1097/AOG.0b013e3181a11a85 PubMedCrossRefGoogle Scholar
  59. Miranne JM, Marek T, Mete M, Iglesia CB (2014) The association of vaginal wind and abdominal striae with pelvic organ prolapse. J Minim Invasive Gynecol 21:S19. doi: 10.1016/j.jmig.2013.12.105 CrossRefGoogle Scholar
  60. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 21(339):b2535. doi: 10.1136/bmj.b2535 CrossRefGoogle Scholar
  61. Nam D, Kim J, Kim SY, Kim S (2010) GSA-SNP: a general approach for gene set analysis of polymorphisms. Nucl Acids Res 38(Web Server Issue):W749–W754. doi: 10.1093/nar/gkq428 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ng MY, Andrew T, Spector TD, Jeffery S, Lymphoedema Consortium (2005) Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy, unselected sibling pairs. J Med Genet 42:235–239. doi: 10.1136/jmg.2004.024075 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Norton PA, Allen-Brady K, Wu J, Egger M, Cannon-Albright L (2015) Clinical characteristics of women with familial pelvic floor disorders. Int Urogynecol J 26:401–406. doi: 10.1007/s00192-014-2513-8 PubMedCrossRefGoogle Scholar
  64. O’Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM et al (2013) Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet 9:e1003796. doi: 10.1371/journal.pgen.1003796 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pal L, Hailpern SM, Santoro NF, Freeman R, Barad D, Kipersztok S, Barnabei VM, Wassertheil-Smoller S (2008) Association of pelvic organ prolapse and fractures in postmenopausal women: analysis of baseline data from the Women’s Health Initiative Estrogen Plus Progestin trial. Menopause 15:59–66. doi: 10.1097/gme.0b013e3181151444 PubMedCrossRefGoogle Scholar
  66. Pecci A, Klersy C, Gresele P, Lee KJ, De Rocco D, Bozzi V, Russo G, Heller PG, Loffredo G, Ballmaier M, Fabris F, Beggiato E, Kahr WH, Pujol-Moix N, Platokouki H, Van Geet C, Noris P, Yerram P, Hermans C, Gerber B, Economou M, De Groot M, Zieger B, De Candia E, Fraticelli V, Kersseboom R, Piccoli GB, Zimmermann S, Fierro T, Glembotsky AC, Vianello F, Zaninetti C, Nicchia E, Güthner C, Baronci C, Seri M, Knight PJ, Balduini CL, Savoia A (2014) MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 35:236–247. doi: 10.1002/humu.22476 PubMedCrossRefGoogle Scholar
  67. Pendergrass SA, Ritchie MD (2015) Phenome-wide association studies: leveraging comprehensive phenotypic and genotypic data for discovery. Curr Genet Med Rep 3:92–100. doi: 10.1007/s40142-015-0067-9 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Richardson JE, Bult CJ (2015) Visual annotation display (VLAD): a tool for finding functional themes in lists of genes. Mamm Genome 26:567–573. doi: 10.1007/s00335-015-9570-2 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Richter HE, Whitehead N, Arya L, Ridgeway B, Allen-Brady K, Norton P, Sung V, Shepherd JP, Komesu Y, Gaddis N, Fraser MO, Tan-Kim J, Meikle S, Page GP, Network PFD (2015) Genetic contributions to urgency urinary incontinence in women. J Urol 193:2020–2027. doi: 10.1016/j.juro.2014.12.023 PubMedCrossRefGoogle Scholar
  70. Rinne KM, Kirkinen PP (1999) What predisposes young women to genital prolapse. Eur J Obstet Gynecol Reprod Biol 84:23–25. doi: 10.1016/S0301-2115(99)00002-0 PubMedCrossRefGoogle Scholar
  71. Rosset S, Tzur S, Behar DM, Wasser WG, Skorecki K (2011) The population genetics of chronic kidney disease: insights from the MYH9-APOL1 locus. Nat Rev Nephrol 7:313–326. doi: 10.1038/nrneph.2011.52 PubMedCrossRefGoogle Scholar
  72. Salter SA, Batra RS, Rohrer TE, Kohli N, Kimball AB (2006) Striae and pelvic relaxation: two disorders of connective tissue with a strong association. J Invest Dermatol 126:1745–1748. doi: 10.1038/sj.jid.5700258 PubMedCrossRefGoogle Scholar
  73. Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326. doi: 10.1038/415321a PubMedCrossRefGoogle Scholar
  74. Schwarzer G (2015) Meta: meta-analysis with R. R package version 4.0-3. http://CRAN.R-project.org/package=meta
  75. Segev Y, Auslender R, Feiner B, Lissak A, Lavie O, Abramov Y (2009) Are women with pelvic organ prolapse at a higher risk of developing hernias? Int Urogynecol J Pelvic Floor Dysfunct 20:1451–1453. doi: 10.1007/s00192-009-0968-9 PubMedCrossRefGoogle Scholar
  76. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shen S, Pu J, Lang B, McCaig CD (2011) A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther 2:20. doi: 10.1186/scrt61 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sobhgol SS, Charandabee SM (2008) Related factors of urge, stress, mixed urinary incontinence and overactive bladder inreproductive age women in Tabriz, Iran: a cross-sectional study. Int Urogynecol J Pelvic Floor Dysfunct 19:367–373. doi: 10.1007/s00192-007-0437-2 PubMedCrossRefGoogle Scholar
  79. Streiner DL (2015) Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests. Am J Clin Nutr 102:721–728. doi: 10.3945/ajcn.115.113548 PubMedCrossRefGoogle Scholar
  80. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012. doi: 10.1001/jama.283.15.2008 PubMedCrossRefGoogle Scholar
  81. Sun W, Maffie JK, Lin L, Petralia RS, Rudy B, Hoffman DA (2011) DPP6 establishes the A-type K+ current gradient critical for the regulation of dendritic excitability in CA1 hippocampal neurons. Neuron 71:1102–1115. doi: 10.1016/j.neuron.2011.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800. doi: 10.1371/journal.pone.0021800 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Tin A, Woodward OM, Kao WH, Liu CT, Lu X, Nalls MA, Shriner D, Semmo M, Akylbekova EL, Wyatt SB, Hwang SJ, Yang Q, Zonderman AB, Adeyemo AA, Palmer C, Meng Y, Reilly M, Shlipak MG, Siscovick D, Evans MK, Rotimi CN, Flessner MF, Köttgen M, Cupples LA, Fox CS, Köttgen A, CARe and CHARGE Consortia (2011) Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet 20:4056–4068. doi: 10.1093/hmg/ddr307 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tung JY, Kiefer AK, Mullins M, Francke U, Eriksson N (2013) Genome-wide association analysis implicates elastic microfibrils in the development of nonsyndromic striae distensae. J Invest Dermatol 133:2628–2631. doi: 10.1038/jid.2013.196 PubMedPubMedCentralCrossRefGoogle Scholar
  85. van den Oord EJ, Sullivan PF (2003) False discoveries and models for gene discovery. Trends Genet 19:537–542. doi: 10.1016/j.tig.2003.08.003 PubMedCrossRefGoogle Scholar
  86. Veit-Rubin N, Cartwright R, Singh AU, Digesu GA, Fernando R, Khullar V (2015) Association between joint hypermobility and pelvic organ prolapse in women: a systematic review and meta-analysis. Int Urogynecol J. doi: 10.1007/s00192-015-2896-1 Google Scholar
  87. Voruganti VS, Kent JW Jr, Debnath S, Cole SA, Haack K, Göring HH, Carless MA, Curran JE, Johnson MP, Almasy L, Dyer TD, Maccluer JW, Moses EK, Abboud HE, Mahaney MC, Blangero J, Comuzzie AG (2013) Genome-wide association analysis confirms and extends the association of SLC2A9 with serum uric acid levels to Mexican Americans. Front Genet 4:279. doi: 10.3389/fgene.2013.00279 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ward RM, Velez Edwards DR, Edwards T, Giri A, Jerome RN, Wu JM (2014) Genetic epidemiology of pelvic organ prolapse: a systematic review. Am J Obstet Gynecol 211:326–335. doi: 10.1016/j.ajog.2014.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucl Acids Res 38(Web Server Issue):W214–W220. doi: 10.1093/nar/gkq537 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ware EB, Riehle E, Smith JA, Zhao W, Turner ST, Kardia SL, Lieske JC (2015) SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration. PLoS One 10:e0128593. doi: 10.1371/journal.pone.0128593 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucl Acids Res 42(1):D1001–D1006. doi: 10.1093/nar/gkt1229 PubMedCrossRefGoogle Scholar
  92. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York. doi:  10.1007/978-0-387-98141-3
  93. Wilkinson KA, Nakamura Y, Henley JM (2010) Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 64:195–212. doi: 10.1016/j.brainresrev.2010.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wojcik GL, Kao WH, Duggal P (2015) Relative performance of gene- and pathway-level methods as secondary analyses for genome-wide association studies. BMC Genet 16:34. doi: 10.1186/s12863-015-0191-2 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wu D, Yang G, Zhang L, Xue J, Wen Z, Li M (2014) Genome-wide association study combined with biological context can reveal more disease-related SNPs altering microRNA target seed sites. BMC Genom 15:669. doi: 10.1186/1471-2164-15-669 CrossRefGoogle Scholar
  96. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucl Acids Res 39(1):W316–W322. doi: 10.1093/nar/gkr483 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucl Acids Res 37(Web Server Issue):W600–W605. doi: 10.1093/nar/gkp290 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Nalls M, Hernandez D, Arking DE, Boerwinkle E, Grove ML, Li M, Linda Kao WH, Chonchol M, Haritunians T, Li G, Lumley T, Psaty BM, Shlipak M, Hwang SJ, Larson MG, O’Donnell CJ, Upadhyay A, van Duijn CM, Hofman A, Rivadeneira F, Stricker B, Uitterlinden AG, Paré G, Parker AN, Ridker PM, Siscovick DS, Gudnason V, Witteman JC, Fox CS, Coresh J (2010a) Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet 3:523–530. doi: 10.1161/CIRCGENETICS.109.934455 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hirankarn N, Ying D, Pan HF, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Leung AM, Li XP, Avihingsanon Y, Wong CM, Lee TL, Ho MH, Lee PP, Chang YK, Li PH, Li RJ, Zhang L, Wong WH, Ng IO, Lau CS, Sham PC, Lau YL, Asian Lupus Genetics Consortium (2010b) Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 6:e1000841. doi: 10.1371/journal.pgen.1000841 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yao ZX, Jogunoori W, Choufani S, Rashid A, Blake T, Yao W, Kreishman P, Amin R, Sidawy AA, Evans SR, Finegold M, Reddy EP, Mishra B, Weksberg R, Kumar R, Mishra L (2010) Epigenetic silencing of beta-spectrin, a TGF-beta signaling/scaffolding protein in a human cancer stem cell disorder: Beckwith-Wiedemann syndrome. J Biol Chem 285:36112–36120. doi: 10.1074/jbc.M110.162347 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ye Z, Mayer J, Ivacic L, Zhou Z, He M, Schrodi SJ, Page D, Brilliant MH, Hebbring SJ (2015) Phenome-wide association studies (PheWASs) for functional variants. Eur J Hum Genet 23:523–529. doi: 10.1038/ejhg.2014.123 PubMedCrossRefGoogle Scholar
  102. Zhao GY, Li ZY, Zou HL, Hu ZL, Song NN, Zheng MH, Su CJ, Ding YQ (2008) Expression of the transcription factor GATA3 in the postnatal mouse central nervous system. Neurosci Res 61:420–428. doi: 10.1016/j.neures.2008.04.014 PubMedCrossRefGoogle Scholar
  103. Zhong Z, Zylstra-Diegel CR, Schumacher CA, Baker JJ, Carpenter AC, Rao S, Yao W, Guan M, Helms JA, Lane NE, Lang RA, Williams BO (2012) Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci USA 109:E2197–E2204. doi: 10.1073/pnas.1120407109 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zöller B, Ji J, Sundquist J, Sundquist K (2013) Shared and nonshared familial susceptibility to surgically treated inguinal hernia, femoral hernia, incisional hernia, epigastric hernia, and umbilical hernia. J Am Coll Surg 217(289–299):e1. doi: 10.1016/j.jamcollsurg.2013.04.020 PubMedGoogle Scholar
  105. Zöller B, Ji J, Sundquist J, Sundquist K (2014) Venous thromboembolism and varicose veins share familial susceptibility: a nationwide family study in Sweden. J Am Heart Assoc 3:e000850. doi: 10.1161/JAHA.114.000850 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lyubov E. Salnikova
    • 1
    • 2
  • Maryam B. Khadzhieva
    • 1
  • Dmitry S. Kolobkov
    • 3
    • 4
  1. 1.Laboratory of Ecological Genetics, N.I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Laboratory of Molecular Immunology, Federal Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry RogachevThe Russian Ministry of Health and Social DevelopmentMoscowRussia
  3. 3.Laboratory of Animal Genetics, N.I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  4. 4.Institute for Systems BiologyMoscowRussia

Personalised recommendations