Advertisement

Human Genetics

, Volume 134, Issue 10, pp 1069–1078 | Cite as

Mutations in human IFT140 cause non-syndromic retinal degeneration

  • Mingchu Xu
  • Lizhu Yang
  • Feng Wang
  • Huajin Li
  • Xia Wang
  • Weichen Wang
  • Zhongqi Ge
  • Keqing Wang
  • Li Zhao
  • Hui Li
  • Yumei Li
  • Ruifang SuiEmail author
  • Rui ChenEmail author
Original Investigation

Abstract

Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are two genetically heterogeneous retinal degenerative disorders. Despite the identification of a number of genes involved in LCA and RP, the genetic etiology remains unknown in many patients. In this study, we aimed to identify novel disease-causing genes of LCA and RP. Retinal capture sequencing was initially performed to screen mutations in known disease-causing genes in different cohorts of LCA and RP patients. For patients with negative results, we performed whole exome sequencing and applied a series of variant filtering strategies. Sanger sequencing was done to validate candidate causative IFT140 variants. Exome sequencing data analysis led to the identification of IFT140 variants in multiple unrelated non-syndromic LCA and RP cases. All the variants are extremely rare and predicted to be damaging. All the variants passed Sanger validation and segregation tests provided that the family members’ DNA was available. The results expand the phenotype spectrum of IFT140 mutations to non-syndromic retinal degeneration, thus extending our understanding of intraflagellar transport and primary cilia biology in the retina. This work also improves the molecular diagnosis of retinal degenerative disease.

Keywords

Retinitis Pigmentosa Retinal Degeneration Night Blindness Peking Union Medical College Hospital Retinitis Pigmentosa Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all the patients and their family members for participating in this study. We thank the eyeGENE Working Group (https://nei.nih.gov/eyegene/staff_eyegene). The eyeGENE study was supported by the Department of Health and Human Services/National Institutes of Health/National Eye Institute intramural program under eyeGENE—Protocol 06-EI-0236 and 10-EI-N164 which has been funded in part under Contract No. HHS-N-260-2007-00001-C. We thank the Exome Aggregation Consortium and the groups that provided exome variant data. We thank Mr. Zachry T. Soens, Mr. Jason S. Salvo and Mr. Evan M. Jones for reviewing and editing the manuscript. NGS was conducted at the Functional Genomic Core (FGC) facility at Baylor College of Medicine supported by NIH shared instrument grant 1S10RR026550 to R. C. This work was supported by grants from National Eye Institute (R01EY022356, R01EY018571), Retinal Research Foundation, Foundation Fighting Blindness (BR-GE-0613-0618-BCM) to R. C. This study was also supported by grants from Foundation Fighting Blindness (CD-CL-0214-0631-PUMCH), National Natural Science Foundation of China (81470669) and Beijing Natural Science Foundation (7152116) to R. S. M. X. is supported by Cullen Foundation endowment to the Molecular and Human Genetics Graduate Program, Baylor College of Medicine. F. W. is supported by a predoctoral fellowship funded by the Burroughs Wellcome Trust Fund: The Houston Laboratory and Population Sciences Training Program in Gene Environment Interaction. Z. G. is supported by NIH T32 funding 2T32EY007102-21A1.

Compliance with ethical standards

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2015_1586_MOESM1_ESM.pdf (753 kb)
Supplementary material 1 (PDF 753 kb)
439_2015_1586_MOESM2_ESM.pdf (150 kb)
Supplementary material 2 (PDF 150 kb)
439_2015_1586_MOESM3_ESM.pdf (188 kb)
Supplementary material 3 (PDF 187 kb)
439_2015_1586_MOESM4_ESM.pdf (80 kb)
Supplementary material 4 (PDF 80 kb)

References

  1. Absalon S, Blisnick T, Kohl L, Toutirais G, Dore G, Julkowska D, Tavenet A, Bastin P (2008) Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 19:929–944. doi: 10.1091/mbc.E07-08-0749 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi: 10.1038/nmeth0410-248 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N, Cormier-Daire V, Brunner HG, Knoers NV, Roepman R (2011) C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet 48:390–395. doi: 10.1136/jmg.2011.088864 CrossRefPubMedGoogle Scholar
  4. Baala L, Romano S, Khaddour R, Saunier S, Smith UM, Audollent S, Ozilou C, Faivre L, Laurent N, Foliguet B, Munnich A, Lyonnet S, Salomon R, Encha-Razavi F, Gubler MC, Boddaert N, de Lonlay P, Johnson CA, Vekemans M, Antignac C, Attie-Bitach T (2007) The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet 80:186–194. doi: 10.1086/510499 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Badano JL, Kim JC, Hoskins BE, Lewis RA, Ansley SJ, Cutler DJ, Castellan C, Beales PL, Leroux MR, Katsanis N (2003) Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet–Biedl patients with two mutations at a second BBS locus. Hum Mol Genet 12:1651–1659CrossRefPubMedGoogle Scholar
  6. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148. doi: 10.1146/annurev.genom.7.080505.115610 CrossRefPubMedGoogle Scholar
  7. Bard LA, Bard PA, Owens GW, Hall BD (1978) Retinal involvement in thoracic-pelvic-phalangeal dystrophy. Arch Ophthalmol 96:278–281. doi: 10.1001/archopht.1978.03910050146008 CrossRefPubMedGoogle Scholar
  8. Beals RK, Weleber RG (2007) Conorenal dysplasia: a syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur. Am J Med Genet Part A 143A:2444–2447. doi: 10.1002/ajmg.a.31948 CrossRefPubMedGoogle Scholar
  9. Blain D, Goetz KE, Ayyagari R, Tumminia SJ (2013) eyeGENE(R): a vision community resource facilitating patient care and paving the path for research through molecular diagnostic testing. Clin Genet 84:190–197. doi: 10.1111/cge.12193 CrossRefPubMedGoogle Scholar
  10. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbo M, Filhol E, Bole-Feysot C, Nitschke P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rodahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89:634–643. doi: 10.1016/j.ajhg.2011.10.001 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Said S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA (2014) Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome. Hum Mol Genet. doi: 10.1093/hmg/ddu441 Google Scholar
  12. Chun S, Fay JC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19:1553–1561. doi: 10.1101/gr.092619.109 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJ, Ngu LH, Budny B, van Wijk E, Gorden NT, Azhimi M, Thauvin-Robinet C, Veltman JA, Boink M, Kleefstra T, Cremers FP, van Bokhoven H, de Brouwer AP (2009) OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am J Hum Genet 85:465–481. doi: 10.1016/j.ajhg.2009.09.002 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Coussa RG, Otto EA, Gee HY, Arthurs P, Ren H, Lopez I, Keser V, Fu Q, Faingold R, Khan A, Schwartzentruber J, Majewski J, Hildebrandt F, Koenekoop RK (2013) WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior–Loken syndrome. Clin Genet 84:150–159. doi: 10.1111/cge.12196 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Crouse JA, Lopes VS, Sanagustin JT, Keady BT, Williams DS, Pazour GJ (2014) Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton (Hoboken) 71:302–310. doi: 10.1002/cm.21173 CrossRefGoogle Scholar
  16. Daiger SPBR, J Greenberg, A Christoffels, W Hide RetNet. http://www.sph.uth.tmc.edu/RetNet/. Accessed 30th Jan 2015
  17. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662. doi: 10.1016/j.tibs.2003.10.007 CrossRefPubMedGoogle Scholar
  18. Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG, Program NCS, Gyapay G, Rieger S, Tonshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, Gallagher TE, Lewis RA, Bergmann C, Otto EA, Saunier S, Scambler PJ, Beales PL, Gleeson JG, Maher ER, Attie-Bitach T, Dollfus H, Johnson CA, Green ED, Gibbs RA, Hildebrandt F, Pierce EA, Katsanis N (2011) TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 43:189–196. doi: 10.1038/ng.756 PubMedCentralCrossRefPubMedGoogle Scholar
  19. de Vries J, Yntema JL, van Die CE, Crama N, Cornelissen EA, Hamel BC (2010) Jeune syndrome: description of 13 cases and a proposal for follow-up protocol. Eur J Pediatr 169:77–88. doi: 10.1007/s00431-009-0991-3 PubMedCentralCrossRefPubMedGoogle Scholar
  20. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, Zonneveld MN, Strom TM, Meitinger T, Brunner HG, Hoyng CB, van den Born LI, Rohrschneider K, Cremers FP (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561. doi: 10.1086/507318 CrossRefGoogle Scholar
  21. Dixon-Salazar T, Silhavy JL, Marsh SE, Louie CM, Scott LC, Gururaj A, Al-Gazali L, Al-Tawari AA, Kayserili H, Sztriha L, Gleeson JG (2004) Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am J Hum Genet 75:979–987. doi: 10.1086/425985 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Estrada-Cuzcano A, Koenekoop RK, Coppieters F, Kohl S, Lopez I, Collin RW, De Baere EB, Roeleveld D, Marek J, Bernd A, Rohrschneider K, van den Born LI, Meire F, Maumenee IH, Jacobson SG, Hoyng CB, Zrenner E, Cremers FP, den Hollander AI (2011) IQCB1 mutations in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci 52:834–839. doi: 10.1167/iovs.10-5221 CrossRefPubMedGoogle Scholar
  23. Follit JA, Xu F, Keady BT, Pazour GJ (2009) Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66:457–468. doi: 10.1002/cm.20346 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Giedion A (1979) Phalangeal cone shaped epiphysis of the hands (PhCSEH) and chronic renal disease—the conorenal syndromes. Pediatr Radiol 8:32–38. doi: 10.1007/BF00973675 CrossRefPubMedGoogle Scholar
  25. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschke P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabo AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV, Consortium UK, Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F (2013a) Defects in the IFT-B component IFT172 cause Jeune and Mainzer–Saldino syndromes in humans. Am J Hum Genet 93:915–925. doi: 10.1016/j.ajhg.2013.09.012 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, Allen SJ, Soliman NA, Hildebrandt F, Otto EA (2013b) Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet 132:865–884. doi: 10.1007/s00439-013-1297-0 CrossRefPubMedGoogle Scholar
  27. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809. doi: 10.1016/s0140-6736(06)69740-7 CrossRefPubMedGoogle Scholar
  28. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543. doi: 10.1056/NEJMra1010172 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Katsanis N (2004) The oligogenic properties of Bardet–Biedl syndrome. Hum Mol Genet 13 Spec No 1:R65–R71. doi: 10.1093/hmg/ddh092
  30. Keady BT, Le YZ, Pazour GJ (2011) IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 22:921–930. doi: 10.1091/mbc.E10-09-0792 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Khan AO, Bolz HJ, Bergmann C (2014) Early-onset severe retinal dystrophy as the initial presentation of IFT140-related skeletal ciliopathy. J aapos 18:203–205. doi: 10.1016/j.jaapos.2013.11.016 CrossRefPubMedGoogle Scholar
  32. Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121:1907–1915. doi: 10.1242/jcs.029397 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, Goldstein LS (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102:175–187CrossRefPubMedGoogle Scholar
  35. Mill P, Lockhart PJ, Fitzpatrick E, Mountford HS, Hall EA, Reijns MA, Keighren M, Bahlo M, Bromhead CJ, Budd P, Aftimos S, Delatycki MB, Savarirayan R, Jackson IJ, Amor DJ (2011) Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet 88:508–515. doi: 10.1016/j.ajhg.2011.03.015 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Miller KA, Ah-Cann CJ, Welfare MF, Tan TY, Pope K, Caruana G, Freckmann ML, Savarirayan R, Bertram JF, Dobbie MS, Bateman JF, Farlie PG (2013) Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome. PLoS Genet 9:e1003746. doi: 10.1371/journal.pgen.1003746 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Mykytyn K, Braun T, Carmi R, Haider NB, Searby CC, Shastri M, Beck G, Wright AF, Iannaccone A, Elbedour K, Riise R, Baldi A, Raas-Rothschild A, Gorman SW, Duhl DM, Jacobson SG, Casavant T, Stone EM, Sheffield VC (2001) Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 28:188–191. doi: 10.1038/88925 CrossRefPubMedGoogle Scholar
  38. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814PubMedCentralCrossRefPubMedGoogle Scholar
  39. Oberklaid F, Danks DM, Mayne V, Campbell P (1977) Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch Dis Child 52:758–765. doi: 10.1136/adc.52.10.758 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O’Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior–Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37:282–288. doi: 10.1038/ng1520 CrossRefPubMedGoogle Scholar
  41. Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM (2012) Mainzer–Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 90:864–870. doi: 10.1016/j.ajhg.2012.03.006 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucl Acids Res 39:e118. doi: 10.1093/nar/gkr407 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Riazuddin SA, Iqbal M, Wang Y, Masuda T, Chen Y, Bowne S, Sullivan LS, Waseem NH, Bhattacharya S, Daiger SP, Zhang K, Khan SN, Riazuddin S, Hejtmancik JF, Sieving PA, Zack DJ, Katsanis N (2010) A splice-site mutation in a retina-specific exon of BBS8 causes nonsyndromic retinitis pigmentosa. Am J Hum Genet 86:805–812. doi: 10.1016/j.ajhg.2010.04.001 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825. doi: 10.1038/nrm952 CrossRefPubMedGoogle Scholar
  45. Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond I, Kawakami I, Kusakabe T, Tsuda M, Ma L, Lee H, Larson RG, Allen SJ, Wilkinson CJ, Nigg EA, Shou C, Lillo C, Williams DS, Hoppe B, Kemper MJ, Neuhaus T, Parisi MA, Glass IA, Petry M, Kispert A, Gloy J, Ganner A, Walz G, Zhu X, Goldman D, Nurnberg P, Swaroop A, Leroux MR, Hildebrandt F (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38:674–681. doi: 10.1038/ng1786 CrossRefPubMedGoogle Scholar
  46. Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanovic R, Peco-Antic A, Mache C, Hurles ME, Joksic I, Guc-Scekic M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C (2013) Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum Mutat 34:714–724. doi: 10.1002/humu.22294 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi: 10.1038/nmeth0810-575 CrossRefPubMedGoogle Scholar
  48. Smit A, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0. http://www.repeatmasker.org. Accessed 30 Dec 2014
  49. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115. doi: 10.1093/nar/gks596 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, Bertini E, Dallapiccola B, Gleeson JG (2006) Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 38:623–625. doi: 10.1038/ng1805 CrossRefPubMedGoogle Scholar
  51. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, Szczepanska M, Krawczynski M, Zachwieja J, Zwolinska D, Beales PL, Ropers HH, Latos-Bielenska A, Kuss AW (2010) Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 86:949–956. doi: 10.1016/j.ajhg.2010.04.012 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R (2013) Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 50:674–688. doi: 10.1136/jmedgenet-2013-101558 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, Wang X, Zaneveld JE, Salvo JS, Siddiqui S, Mao L, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Wen C, Flagg K, Ferreyra H, Pei J, Khan A, Ren H, Wang K, Lopez I, Qamar R, Zenteno JC, Ayala-Ramirez R, Buentello-Volante B, Fu Q, Simpson DA, Li Y, Sui R, Silvestri G, Daiger SP, Koenekoop RK, Zhang K, Chen R (2014) Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 133:331–345. doi: 10.1007/s00439-013-1381-5 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein Cell 2:202–214. doi: 10.1007/s13238-011-1018-1 CrossRefPubMedGoogle Scholar
  55. Xu M, Gelowani V, Eblimit A, Wang F, Young MP, Sawyer BL, Zhao L, Jenkins G, Creel DJ, Wang K, Ge Z, Wang H, Li Y, Hartnett ME, Chen R (2015) ATF6 is mutated in early onset photoreceptor degeneration with macular involvement. Invest Ophthalmol Vis Sci 56:3889–3895. doi: 10.1167/iovs.15-16778 CrossRefPubMedGoogle Scholar
  56. Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15:700–725PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mingchu Xu
    • 1
    • 2
  • Lizhu Yang
    • 3
  • Feng Wang
    • 1
    • 2
  • Huajin Li
    • 3
  • Xia Wang
    • 1
  • Weichen Wang
    • 3
  • Zhongqi Ge
    • 1
    • 2
  • Keqing Wang
    • 1
    • 2
  • Li Zhao
    • 1
    • 2
    • 6
  • Hui Li
    • 3
  • Yumei Li
    • 1
    • 2
  • Ruifang Sui
    • 3
    Email author
  • Rui Chen
    • 1
    • 2
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Human Genome Sequencing CenterBaylor College of MedicineHoustonUSA
  3. 3.Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
  4. 4.Program in Developmental BiologyBaylor College of MedicineHoustonUSA
  5. 5.The Verna and Marrs Mclean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonUSA
  6. 6.Structural and Computational Biology and Molecular Biophysics Graduate ProgramBaylor College of MedicineHoustonUSA

Personalised recommendations