Advertisement

Human Genetics

, Volume 134, Issue 10, pp 1055–1068 | Cite as

Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes

  • Nicola H. Chapman
  • Alejandro Q. NatoJr.
  • Raphael Bernier
  • Katy Ankenman
  • Harkirat Sohi
  • Jeff Munson
  • Ashok Patowary
  • Marilyn Archer
  • Elizabeth M. Blue
  • Sara Jane Webb
  • Hilary Coon
  • Wendy H. Raskind
  • Zoran Brkanac
  • Ellen M. Wijsman
Original Investigation

Abstract

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12–47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.

Keywords

Autism Spectrum Disorder Whole Exome Sequencing Broad Autism Phenotype Unaffected Individual Sort Intolerant From Tolerant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ASD

Autism spectrum disorder

WES

Whole exome sequencing

ADOS

Autism Diagnostic Observational Schedule

ADI-R

Autism Diagnostic Interview – Revised

BPASS

Broader Phenotype Autism Symptom Scale

BAP

Broader autism phenotype

OE

Illumina HumanOmniExpress

HCE

Illumina Human Core Exome

1KGP-EUR

1,000 genome project Europeans

IV

Inheritance vectors

MCMC

Markov chain Monte Carlo

Notes

Acknowledgments

Research reported in this publication was supported by funding from the National Institute of Mental Health, and the National Institute on Aging, under award numbers R01MH092367, R01MH094293, R01MH094400, and R00AG040184 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We would like to thank those with ASD and their families, because without their participation this research would not be possible.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Supplementary material

439_2015_1585_MOESM1_ESM.pdf (60 kb)
Supplementary material 1 (PDF 61 kb)
439_2015_1585_MOESM2_ESM.pdf (180 kb)
Supplementary material 2 (PDF 181 kb)
439_2015_1585_MOESM3_ESM.pdf (107 kb)
Supplementary material 3 (PDF 107 kb)

References

  1. Adzhubei IA et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi: 10.1038/nmeth0410-248 PubMedCentralCrossRefPubMedGoogle Scholar
  2. American Psychiatric Association (2013) Diagnostic and statistical manual, 5th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  3. Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Sudhof TC (2012) Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci USA 109:18120–18125. doi: 10.1073/pnas.1216398109 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25:25–29. doi: 10.1038/75556 CrossRefGoogle Scholar
  5. Becker EB, Stoodley CJ (2013) Autism spectrum disorder and the cerebellum. Int Rev Neurobiol 113:1–34. doi: 10.1016/B978-0-12-418700-9.00001-0 CrossRefPubMedGoogle Scholar
  6. Berg JM, Geschwind DH (2012) Autism genetics: searching for specificity and convergence. Genome Biol 13:247. doi: 10.1186/gb4034 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bishop DVM (1998) Development of the children’s communication checklist (CCC): a method for assessing qualitative aspects of communicative impairment in children. J Child Psychol Psychiatry 39:879–891CrossRefPubMedGoogle Scholar
  8. Buescher AV, Cidav Z, Knapp M, Mandell DS (2014) Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 168:721–728. doi: 10.1001/jamapediatrics.2014.210 CrossRefPubMedGoogle Scholar
  9. CDC (2014) Morbidity and mortality weekly report: prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 Sites, United States, 2010 vol 63 (SS02)Google Scholar
  10. Chahrour MH et al (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 8:e1002635. doi: 10.1371/journal.pgen.1002635 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chapman NH et al (2011) Genome-scan for IQ discrepancy in autism: evidence for loci on chromosomes 10 and 16. Hum Genet 129:59–70PubMedCentralCrossRefPubMedGoogle Scholar
  12. Cheung CYK, Thompson EA, Wijsman EM (2013) GIGI: An approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet 92:504–516PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cheung CYK, Blue EM, Wijsman EM (2014) A statistical framework to guide sequencing choices in pedigrees. Am J Hum Genet 94:257–267PubMedCentralCrossRefPubMedGoogle Scholar
  14. Cohen M (1997) Children’s memory scale. PearsonGoogle Scholar
  15. Constantino JN (2012) Social responsiveness scale, 2nd edn. Western Psychological Services, Los AngelesGoogle Scholar
  16. Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, Sidow A (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15:901–913PubMedCentralCrossRefPubMedGoogle Scholar
  17. Cukier HN et al (2014) Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders Mol. Autism 5:1. doi: 10.1186/2040-2392-5-1 CrossRefGoogle Scholar
  18. Dawson G, Estes A, Munson J, Schellenberg G, Bernier R, Abbott R (2007) Quantitative assessment of autism symptom-related traits in probands and parents: broader Phenotype Autism Symptom Scale. J Autism Dev Disord 37:523–536. doi: 10.1007/s10803-006-0182-2 CrossRefPubMedGoogle Scholar
  19. Derkach A et al (2014) Association analysis using next-generation sequence data from publicly available control groups: the robust variance score statistic. Bioinformatics 30:2179–2188. doi: 10.1093/bioinformatics/btu196 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dunn W (1999) Sensory profile. PearsonGoogle Scholar
  21. Fajardo et al (2011) Detecting false positive signals in exome sequencing. Human Mutation 33(4):609–613CrossRefGoogle Scholar
  22. Fatemi SH et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807. doi: 10.1007/s12311-012-0355-9 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gratten J, Visscher PM, Mowry BJ, Wray NR (2013) Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 45:234–238. doi: 10.1038/ng.2555 CrossRefPubMedGoogle Scholar
  25. Gunnersen JM et al (2007) Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron 56:621–639CrossRefPubMedGoogle Scholar
  26. Gunnersen JM, Kuek A, Phipps JA, Hammond VE, Puthussery T, Fletcher EL, Tan SS (2009) Seizure-related gene 6 (Sez-6) in amacrine cells of the rodent retina and the consequence of gene deletion. PLoS One 4:e6546. doi: 10.1371/journal.pone.0006546 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Huang QQ, Shete S, Amos CI (2004) Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Am J Hum Genet 75:1106–1112PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hubbard TJ et al (2007) Ensembl 2007. Nucleic Acids Res 35:D610–D617PubMedCentralCrossRefPubMedGoogle Scholar
  29. Human Protein Atlas http://proteinatlas.org (2014)
  30. IBDgraph 2.0: another C-library add-on for MORGAN 3 http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml (2010)Google Scholar
  31. IMGSAC (2001) A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69:570–581Google Scholar
  32. Jin G et al (2013) Identification and characterization of novel alternative splice variants of human SAMD11. Gene 530:215–221 doi: 10.1016/j.gene.2013.08.033
  33. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006PubMedCentralCrossRefPubMedGoogle Scholar
  34. Konyukh M et al (2011) Variations of the candidate SEZ6L2 gene on Chromosome 16p11.2 in patients with autism spectrum disorders and in human populations. PLoS One 6:e17289. doi: 10.1371/journal.pone.0017289 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kumar P, Henikoff S, Ng PC (2009a) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. doi: 10.1038/nprot.2009.86 CrossRefPubMedGoogle Scholar
  36. Kumar RA et al (2009b) Association and mutation analyses of 16p11.2 autism candidate genes. PLoS One 4:e4582. doi: 10.1371/journal.pone.0004582 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Lander ES, Green PJ (1987) Construction of multilocus genetic maps in humans. Proc Natl Acad Sci USA 84:2363–2367PubMedCentralCrossRefPubMedGoogle Scholar
  38. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595. doi: 10.1093/bioinformatics/btp698 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL (2012) ADOS-2: autism diagnostic observation schedule, 2nd edn. Western Psychological Services, TorranceGoogle Scholar
  41. Maestrini E et al (2010) High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene region in autism susceptibility. Mol Psychiatry 15:954–968. doi: 10.1038/mp.2009.34 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Marshall CR et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488PubMedCentralCrossRefPubMedGoogle Scholar
  43. Matise TC et al (2007) A second-generation combined linkage-physical map of the human genome. Genom Res 17:1783–1786CrossRefGoogle Scholar
  44. McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi: 10.1101/gr.107524.110 PubMedCentralCrossRefPubMedGoogle Scholar
  45. MORGAN: A package for Markov chain Monte Carlo in genetic analysis (version 3.1.1) http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml (2012)
  46. MORGAN: a package for Markov chain Monte Carlo in genetic analysis (version 3.2) http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml (2013)
  47. Mulley JC, Iona X, Hodgson B, Heron SE, Berkovic SF, Scheffer IE, Dibbens LM (2011) The Role of Seizure-Related SEZ6 as a Susceptibility Gene in Febrile Seizures Neurol Res Int 2011:917565 doi: 10.1155/2011/917565
  48. Nair A, Treiber JM, Shukla DK, Shih P, Muller RA (2013) Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 136:1942–1955. doi: 10.1093/brain/awt079 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Nato AQ, Chapman NH, Cheung CYK, Brkanac Z, Wijsman EM (2013) PBAP: A pipeline for family-based quality control of pedigree structures and dense genetic marker data. Paper presented at the ASHG 63rd Annual Meeting, Boston, MAGoogle Scholar
  50. Neale BM et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245. doi: 10.1038/nature11011 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272PubMedCentralCrossRefPubMedGoogle Scholar
  52. O’Connell JR, Weeks DE (1995) The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 11:402–408CrossRefPubMedGoogle Scholar
  53. O’Roak BJ et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250. doi: 10.1038/nature10989 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Ozonoff S et al (2011) Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128:e488–e495. doi: 10.1542/peds.2010-2825 PubMedCentralPubMedGoogle Scholar
  55. Picard Tools: a set of Java command line tools for manipulating high-throughput sequencing data and formats. http://broadinstitute.github.io/picard/ (2014)
  56. Rosenbloom KR et al (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41:D56–D63. doi: 10.1093/nar/gks1172 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Rutter M, Folstein S (1995) Modified autism family history interview for developmental disorders of cognition and social functioning. The Johns Hopkins University School of Medicine, BaltimoreGoogle Scholar
  58. Rutter M, LeCouteur A, Lord C (2003) Autism diagnostic interview revised, WPS edn. Manual. Western Psychological Services, Los AngelesGoogle Scholar
  59. Saad M, Wijsman EM (2014) Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes. Genet Epidemiol 38:1–9PubMedCentralCrossRefPubMedGoogle Scholar
  60. Sanders SJ et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–885. doi: 10.1016/j.neuron.2011.05.002 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Sanders SJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241. doi: 10.1038/nature10945 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sarason B, Sarason I, Hacker A, Basham R (1985) Concomitants of social support: social skills, physical attractiveness, and gender. J Pers Soc Psychol 49:469–480CrossRefGoogle Scholar
  63. Schellenberg GD et al (2006) Evidence for multiple loci from a genome scan of autism kindreds. Molecular Psychiatry 11:1049–1060CrossRefPubMedGoogle Scholar
  64. Shi L et al (2013) Whole-genome sequencing in an autism multiplex family Mol. Autism 4:8. doi: 10.1186/2040-2392-4-8 CrossRefGoogle Scholar
  65. Shimizu T, Hibi M (2009) Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev Growth Differ 51:221–231. doi: 10.1111/j.1440-169X.2009.01088.x CrossRefPubMedGoogle Scholar
  66. Shimizu-Nishikawa K, Kajiwara K, Kimura M, Katsuki M, Sugaya E (1995) Cloning and expression of SEZ-6, a brain-specific and seizure-related cDNA. Brain Res Mol Brain Res 28:201–210CrossRefPubMedGoogle Scholar
  67. Sparrow S, Cichetti D, Balla D (2005) Vineland adaptive behavior scales, 2nd edn. Pearson, BloomingtonGoogle Scholar
  68. Spence SJ, Schneider MT (2009) The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr Res 65:599–606. doi: 10.1203/PDR.0b013e31819e7168 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR (2013) Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 4:30. doi: 10.1186/2040-2392-4-30 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Toma C et al (2014) Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol Psychiatry 19:784–790. doi: 10.1038/mp.2013.106 CrossRefPubMedGoogle Scholar
  71. Uhlen M et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250. doi: 10.1038/nbt1210-1248 CrossRefPubMedGoogle Scholar
  72. Wagner R, Torgesen J, Rashotte C (1999) Comprehensive test of phonological processing (CTOPP). Western Psychological Services, Los AngelesGoogle Scholar
  73. Wechsler D (1981) Wechsler adult intelligence scale—revised (WAIS-R)Google Scholar
  74. Wechsler D (1989) WPPSI-R manual: Wechsler preschool and primary scale of intelligence, revisedGoogle Scholar
  75. Wechsler D (1992) Wechsler intelligence scale for children, 3rd edn. (WISC-III)Google Scholar
  76. Wechsler D (1997) Wechsler memory scale for adults, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  77. Wijsman EM (2012) The role of large pedigrees in an era of high-throughput sequencing. Hum Genet 131:1555–1563. doi: 10.1007/s00439-012-1190-2 PubMedCentralCrossRefPubMedGoogle Scholar
  78. Xu C et al (2013) Polymorphisms in seizure 6-like gene are associated with bipolar disorder I: evidence of gene x gender interaction. J Affect Disord 145:95–99. doi: 10.1016/j.jad.2012.07.017 CrossRefPubMedGoogle Scholar
  79. Yu ZL et al (2007) Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene. J Neurosci Res 85:166–172. doi: 10.1002/jnr.21103 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nicola H. Chapman
    • 1
  • Alejandro Q. NatoJr.
    • 1
  • Raphael Bernier
    • 2
  • Katy Ankenman
    • 9
  • Harkirat Sohi
    • 1
  • Jeff Munson
    • 2
    • 3
  • Ashok Patowary
    • 2
  • Marilyn Archer
    • 2
  • Elizabeth M. Blue
    • 1
  • Sara Jane Webb
    • 2
    • 3
  • Hilary Coon
    • 4
    • 5
  • Wendy H. Raskind
    • 1
    • 2
    • 7
  • Zoran Brkanac
    • 2
  • Ellen M. Wijsman
    • 1
    • 6
    • 7
    • 8
  1. 1.Division of Medical Genetics, School of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUSA
  3. 3.Center on Child Development and DisabilityUniversity of WashingtonSeattleUSA
  4. 4.Department of Internal MedicineUniversity of UtahSalt Lake CityUSA
  5. 5.Department of Psychiatry, School of MedicineUniversity of UtahSalt Lake CityUSA
  6. 6.Department of BiostatisticsUniversity of WashingtonSeattleUSA
  7. 7.Department of Genome SciencesUniversity of WashingtonSeattleUSA
  8. 8.University of WashingtonSeattleUSA
  9. 9.Department of PsychiatryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations