Advertisement

Human Genetics

, Volume 134, Issue 2, pp 191–201 | Cite as

Using extended pedigrees to identify novel autism spectrum disorder (ASD) candidate genes

  • Marc Woodbury-SmithEmail author
  • Andrew D. Paterson
  • Bhooma Thiruvahindrapduram
  • Anath C. Lionel
  • Christian R. Marshall
  • Daniele Merico
  • Bridget A. Fernandez
  • Eric Duku
  • James S. Sutcliffe
  • Irene O’Conner
  • Christina Chrysler
  • Ann Thompson
  • Barbara Kellam
  • Kristiina Tammimies
  • Susan Walker
  • Ryan K. C. Yuen
  • Mohammed Uddin
  • Jennifer L. Howe
  • Morgan Parlier
  • Kathy Whitten
  • Peter Szatmari
  • Veronica J. Vieland
  • Joseph Piven
  • Stephen W. Scherer
Original Investigation

Abstract

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder. Extended pedigrees, in which several members have ASD, provide an opportunity to investigate inherited genetic risk factors. In this current study, we recruited 19 extended ASD pedigrees, and, using the Illumina HumanOmni2.5 BeadChip, conducted genome-wide CNV interrogation. We found no definitive evidence of an etiological role for segregating CNVs in these pedigrees, and no evidence that linkage signals in these pedigrees are explained by segregating CNVs. However, a small number of putative de novo variants were transmitted from BAP parents to their ASD offspring, and evidence emerged for a rare duplication CNV at 11p13.3 harboring two putative ‘developmental/neuropsychiatric’ susceptibility gene(s), GSTP1 and NDUFV1.

Keywords

Autism Spectrum Disorder Autism Spectrum Disorder Copy Number Variant Intellectual Disability Autism Spectrum Disorder Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the families for their participation in the study and The Centre for Applied Genomics at the Hospital for Sick Children and University of Toronto for technical support. MWS acknowledges the support of CIHR [Strategic Training in Advanced Epidemiology (STAGE) program], Hamilton Health Sciences, and Scottish Rite Charitable Foundation. This work was funded in part by CIHR operating grants #79499 and #89777, NIH grants MH076028, HD003110 (JP) and MH086117 (VJV). SWS holds the GlaxoSmithKline-CIHR Endowed Chair in Genome Sciences. PS holds the Patsy and Jamie Anderson Chair in Child and Youth Mental Health.This study makes use of data generated by the DECIPHER Consortium. A full list of centers who contributed to the generation of the data is available from http://decipher.sanger.ac.uk and via email from decipher@sanger.ac.uk. Funding for the project was provided by the Wellcome Trust.

Supplementary material

439_2014_1513_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1147 kb)

References

  1. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allen-Brady K, Miller J, Matsunami N, Stevens J, Block H, Farley M, Krasny L, Pingree C, Lainhart J, Leppert M et al (2009) A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry 14:590–600PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association (APA) (2000) DSM-IV Diagnostic and Statistical Manual of Mental Disorders, 4th edn, text revision. APA, Washington, DCGoogle Scholar
  4. Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, Bolshakova N, Bölte S, Bolton PF, Bourgeron T et al (2012) Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Gen 21:4781–4792PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77PubMedCrossRefGoogle Scholar
  6. Banerjee-Basu S, Packer A (2010) SFARI gene: an evolving database for the autism research community. Dis Models Mechanisms 3:133–135CrossRefGoogle Scholar
  7. Ben-Shachar D (2009) Mitochondrial complex I as a possible novel peripheral biomarker for Schizophrenia. In: Ritsner Michael S (ed) The handbook of neuropsychiatric biomarkers, endophenotypes and genes, vol 3. Springer, New York, pp 71–82CrossRefGoogle Scholar
  8. Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, Fisher S, Fox L, Howells W, Bertelsen S et al (2010) A genome-wide association study of alcohol dependence. Proc Natl Acad Sci 107:5082–5087PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bolton P, MacDonald H, Pickles A, Rios P, Goode S, Crowson M, Bailey A, Rutter M (1994) A case–control family history study of autism. J Child Psychol Psychiatry 35:877–900PubMedCrossRefGoogle Scholar
  10. Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, State MW (2012) The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 76:1052–1056PubMedCrossRefGoogle Scholar
  11. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A, Holmes CC, Ragoussis J (2007) QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 35:2013–2025PubMedCentralPubMedCrossRefGoogle Scholar
  12. Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22(3):229–237PubMedCrossRefGoogle Scholar
  13. Disciglio V, Rizzo C, Mencarelli MA, Mucciolo M, Marozza A, Di Marco C, Massarelli A, Canocchi V, Baldassarri M, Ndoni E et al (2014) Interstitial 22q13 deletions not involving SHANK3 gene: a new contiguous gene syndrome. Am J Med Genet Part A 164(7):1666–1676CrossRefGoogle Scholar
  14. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524–533PubMedCentralPubMedCrossRefGoogle Scholar
  15. Frazier TW, Thompson L, Youngstrom EA, Law P, Hardan AY, Eng C, Morris N (2014) A twin study of heritable and shared environmental contributions to autism. J Autism Dev Disord 44:2013–2025PubMedCrossRefGoogle Scholar
  16. Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch’ang L-Y, Huang W, Liu B, Shen Y et al (2003) The international HapMap project. Nature 426:789–796CrossRefGoogle Scholar
  17. Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS (2014) Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA psychiatry 71(6):665–671PubMedCrossRefGoogle Scholar
  18. Gravina P, Spoletini I, Masini S, Valentini A, Vanni D, Paladini E, Bossù P, Caltagirone C, Federici G, Spalletta G et al (2011) Genetic polymorphisms of glutathione-S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatry Res 187:454–456PubMedCrossRefGoogle Scholar
  19. Haas RH (2010) Autism and mitochondrial disease. Dev Dis Res Reviews 16:144–153CrossRefGoogle Scholar
  20. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102PubMedCrossRefGoogle Scholar
  21. Hämäläinen RH, Avela K, Lambert JA, Kallijärvi J, Eyaid W, Gronau J, Ignaszewski AP, McFadden D, Sorge G, Lipsanen-Nyman M et al (2004) Novel mutations in the TRIM37 gene in Mulibrey Nanism. Hum Mutat 23:522PubMedCrossRefGoogle Scholar
  22. Hurley RS, Losh M, Parlier M, Reznick JS, Piven J (2007) The broad autism phenotype questionnaire. J Autism Dev Disord 37:1679–1690PubMedCrossRefGoogle Scholar
  23. Lavelle TA, Weinstein MC, Newhouse JP, Munir K, Kuhlthau KA, Prosser LA (2014) Economic burden of childhood autism spectrum disorders. Pediatrics 133(3):e520–e529PubMedCrossRefGoogle Scholar
  24. Leggett V, Jacobs P, Nation K, Scerif G, Bishop DV (2010) Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review. Dev Med Child Neurol 52:119–129PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H (2010) The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry 167:1357–1363PubMedCrossRefGoogle Scholar
  26. Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview–revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685PubMedCrossRefGoogle Scholar
  27. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M (2000) The autism diagnostic observation schedule–generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30:205–223PubMedCrossRefGoogle Scholar
  28. Losh M, Adolphs R, Poe MD, Couture S, Penn D, Baranek GT, Piven J (2009) Neuropsychological profile of autism and the broad autism phenotype. Arch Gen Psychiatry 66:518–526PubMedCentralPubMedCrossRefGoogle Scholar
  29. Marin SE, Mesterman R, Robinson B, Rodenburg RJ, Smeitink J, Tarnopolsky MA (2013) Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2. Gene 516:162–167PubMedCrossRefGoogle Scholar
  30. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488PubMedCentralPubMedCrossRefGoogle Scholar
  31. Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, Jinde S, Nishida H, Sugiyama T, Kasai K et al (2011) The NADH-ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) gene variants are associated with autism. Acta Psychiatr Scand 123:118–124PubMedCrossRefGoogle Scholar
  32. Matsunami N, Hensel CH, Baird L, Stevens J, Otterud B, Leppert T, Varvil T, Hadley D, Glessner JT, Pellegrino R et al (2014) Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population. Mol Autism 5:5PubMedCentralPubMedCrossRefGoogle Scholar
  33. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245PubMedCentralPubMedCrossRefGoogle Scholar
  34. Noor A, Whibley A, Marshall CR, Gianakopoulos PJ, Piton A, Carson AR, Orlic-Milacic M, Lionel AC, Sato D, Pinto D et al (2010) Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci Trans Med 2(49):49ra68CrossRefGoogle Scholar
  35. Nordenbæk C, Jørgensen M, Kyvik KO, Bilenberg N (2014) A Danish population-based twin study on autism spectrum disorders. Eur Child Adolesc Psychiatry 23:35–43PubMedCrossRefGoogle Scholar
  36. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD et al (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250PubMedCentralPubMedCrossRefGoogle Scholar
  37. Pagnamenta AT, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC, Giorda R, Berney T, Mani E, Molteni M et al (2011) Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet 48:48–54PubMedCentralPubMedCrossRefGoogle Scholar
  38. Park C, Park SK (2012) Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells 33:105–110PubMedCentralPubMedCrossRefGoogle Scholar
  39. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372PubMedCentralPubMedCrossRefGoogle Scholar
  40. Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, MacDonald JR, Mills R, Prasad A, Noonan K et al (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29(6):512–520PubMedCentralPubMedCrossRefGoogle Scholar
  41. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94:677–694PubMedCentralPubMedCrossRefGoogle Scholar
  42. Piven J, Gayle J, Chase GA, Fink B, Landa R, Wzorek MM, Folstein SE (1990) A family history study of neuropsychiatric disorders in the adult siblings of autistic individuals. J Am Acad Child Adolesc Psychiatry 29:177–183PubMedCrossRefGoogle Scholar
  43. Piven J, Palmer P, Landa R, Santangelo S, Jacobi D, Childress D (1997) Personality and language characteristics in parents from multiple-incidence autism families. Am J Med Genet 74:398–411PubMedCrossRefGoogle Scholar
  44. Piven J, Vieland VJ, Parlier M, Thompson A, O’Conner I, Woodbury-Smith M, Huang Y, Walters KA, Fernandez B, Szatmari P (2013) A molecular genetic study of autism and related phenotypes in extended pedigrees. J Neurodev Dis 5:30CrossRefGoogle Scholar
  45. Prasad A, Merico D, Thiruvahindrapuram B, Wei J, Lionel AC, Sato D, Rickaby J, Lu C, Szatmari P, Roberts W et al (2012) A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 2:1665–1685PubMedCentralPubMedCrossRefGoogle Scholar
  46. Risheg H, Pasion R, Sacharow S, Proud V, Immken L, Schwartz S, Tepperberg JH, Papenhausen P, Tan TY, Andrieux J et al (2013) Clinical comparison of overlapping deletions of 19p13. 3. Am J Med Genet Part A 161:1110–1116CrossRefGoogle Scholar
  47. Risi S, Lord C, Gotham K, Corsello C, Chrysler C, Szatmari P, Cook EH Jr, Leventhal BL, Pickles A (2006) Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 45:1094–1103PubMedCrossRefGoogle Scholar
  48. Sabbir MG, Wigle N, Loewen S, Gu Y, Buse C, Hicks GG, Mowat MR (2010) Identification and characterization of Dlc1 isoforms in the mouse and study of the biological function of a single gene trapped isoform. BMC Biol 8:17PubMedCentralPubMedCrossRefGoogle Scholar
  49. Salyakina D, Cukier HN, Lee JM, Sacharow S, Nations LD, Ma D, Jaworski JM, Konidari I, Whitehead PL, Wright HH et al (2011) Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk. PloS One 6:e26049PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, O’Connor I, Russell C, Drmic IE, Hamdan FF et al (2012) SHANK1 Deletions in Males with Autism Spectrum Disorder. Am J Hum Genet 90(5):879–887PubMedCentralPubMedCrossRefGoogle Scholar
  52. Shi L, Zhang X, Golhar R, Otieno FG, He M, Hou C, Kim C, Keating B, Lyon GJ, Wang K et al (2013) Whole-genome sequencing in an autism multiplex family. Mol Autism 4:8PubMedCentralPubMedCrossRefGoogle Scholar
  53. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328PubMedCrossRefGoogle Scholar
  54. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione-S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299–313PubMedCentralPubMedCrossRefGoogle Scholar
  55. Uddin M, Tammimies K, Pellecchia G, Alipanahi B, Hu P, Wang Z, Pinto D, Lau L, Nalpathamkalam T, Marshall CR et al (2014) Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nat Genet 46(7):742–747PubMedCrossRefGoogle Scholar
  56. Vieland VJ, Hallmayer J, Huang Y, Pagnamenta AT, Pinto D, Khan H, Monaco AP, Paterson AD, Scherer SW, Sutcliffe JS et al (2011) Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism. J Neurodev Dis 3(2):113–123CrossRefGoogle Scholar
  57. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wichmann H, Gieger C, Illig T, MONICA/KORA Study Group (2005) KORA-gen-resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67:S26PubMedCrossRefGoogle Scholar
  59. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marc Woodbury-Smith
    • 1
    • 2
    Email author
  • Andrew D. Paterson
    • 2
    • 6
  • Bhooma Thiruvahindrapduram
    • 2
  • Anath C. Lionel
    • 2
  • Christian R. Marshall
    • 2
  • Daniele Merico
    • 2
  • Bridget A. Fernandez
    • 3
  • Eric Duku
    • 1
  • James S. Sutcliffe
    • 8
  • Irene O’Conner
    • 1
  • Christina Chrysler
    • 1
  • Ann Thompson
    • 1
  • Barbara Kellam
    • 2
  • Kristiina Tammimies
    • 2
  • Susan Walker
    • 2
  • Ryan K. C. Yuen
    • 2
  • Mohammed Uddin
    • 2
  • Jennifer L. Howe
    • 2
  • Morgan Parlier
    • 5
  • Kathy Whitten
    • 3
  • Peter Szatmari
    • 7
  • Veronica J. Vieland
    • 4
  • Joseph Piven
    • 5
  • Stephen W. Scherer
    • 2
  1. 1.Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada
  2. 2.Program in Genetics and Genome Biology, The Centre for Applied GenomicsThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Provincial Medical Genetics ProgramMemorial HospitalSt John’sCanada
  4. 4.Battelle Center for Mathematical MedicineNationwide Children’s HospitalColumbusUSA
  5. 5.Carolina Institute for Developmental DisabilitiesUniversity of North CarolinaWilmingtonUSA
  6. 6.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  7. 7.Centre for Addiction and Mental HealthThe Hospital for Sick Children and University of TorontoTorontoUSA
  8. 8.Vanderbilt University Medical CenterVanderbilt UniversityNashvilleUSA

Personalised recommendations