Advertisement

Human Genetics

, Volume 133, Issue 7, pp 919–930 | Cite as

Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

  • Ping AnEmail author
  • Robert J. Straka
  • Toni I. Pollin
  • Mary F. Feitosa
  • Mary K. Wojczynski
  • E. Warwick Daw
  • Jeffrey R. O’Connell
  • Quince Gibson
  • Kathleen A. Ryan
  • Paul N. Hopkins
  • Michael Y. Tsai
  • Chao-Qiang Lai
  • Michael A. Province
  • Jose M. Ordovas
  • Alan R. Shuldiner
  • Donna K. Arnett
  • Ingrid B. Borecki
Original Investigation

Abstract

Non-high-density lipoprotein cholesterol(NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention Heart Study and Family Heart Study. A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e−7, MAF = 2 %; validation p = 6e−4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e−4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10 %). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D′ = 1, r 2 = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e−6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high-fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted.

Keywords

Fenofibrate Discovery Cohort Replication Cohort Family Heart Study Perfect Linkage Disequilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the other investigators, the staff and the participants of the GOLDN Study, the HAPI Heart Study and the Family Heart Study. The GOLDN Study support was provided by the NHLBI grant U01 HL072524. The FamHS was supported by NIH Grants R01 HL087700 and R01 HL088215 (Michael A. Province, PI) from NHLBI, and R01 DK8925601 and R01 075681 (Ingrid B. Borecki, PI) from NIDDK. The investigators thank the GOLDN and FamHS participants and staff for their valuable contributions. The HAPI Heart Study was supported by NIH research Grants U01 HL072515, R01 HL104193, U01 HL084756 and the Mid Atlantic Nutrition and Obesity Research Center Grant P30 DK072488. We thank the staff at the Amish Research Clinic for their outstanding efforts and our Amish research volunteers for their long-standing partnership in research.

Conflict of interest

None.

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2001) GRR: graphical representation of relationship errors. Bioinformatics 17:742–743PubMedCrossRefGoogle Scholar
  2. Agarwala R, Biesecker LG, Hopkins KA, Francomano CA, Schaffer AA (1998) Software for constructing and verifying pedigrees within large genealogies and an application to the old order Amish of Lancaster County. Genome Res 8:211–221PubMedCrossRefGoogle Scholar
  3. Agarwala R, Biesecker LG, Tomlin JF, Schäffer AA (1999) Towards a complete North American Anabaptist genealogy: a systematic approach to merging partially overlapping genealogy resources. Am J Med Genet 86:156–161PubMedCrossRefGoogle Scholar
  4. Agarwala R, Schaffer AA, Tomlin JF (2001) Towards a complete North American Anabaptist Genealogy II: analysis of inbreeding. Hum Biol 73:533–545PubMedCrossRefGoogle Scholar
  5. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211PubMedCentralPubMedCrossRefGoogle Scholar
  6. Aslibekyan S, An P, Frazier-Wood AC, Kabagambe EK, Irvin MR, Straka RJ et al (2013) Preliminary evidence of genetic determinants of adiponectin response to fenofibrate in the genetics of lipid lowering drugs and diet network. Nutr Metab Cardiovasc Dis 23:987–994PubMedCrossRefGoogle Scholar
  7. Ban HJ, Heo JY, Oh KS, Park KJ (2010) Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet 11:26PubMedCentralPubMedCrossRefGoogle Scholar
  8. Beekman M, Heijmana BT, Martin NG, Pedersen NL, Whitfield JB, DeFaire U et al (2002) Heritabilities of apolipoprotein and lipid levels in three countries. Twin Res 5:87–97PubMedCrossRefGoogle Scholar
  9. Chung CM, Lin TH, Chen JW, Leu HB, Yang HC, Ho HY et al (2011) A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 60:2417–2423PubMedCentralPubMedCrossRefGoogle Scholar
  10. Corbett J, Kraja A, Borecki IB, Province MA (2003) Use of a random coefficient regression (RCR) model to estimate growth parameters. BMC Genet 4(Suppl 1):S5PubMedCentralPubMedCrossRefGoogle Scholar
  11. Corey KE, Lai M, Gelrud LG, Misdraji J, Barlow LL, Zheng H et al (2012) Non-high-density lipoprotein cholesterol as a biomarker for nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 10:651–656PubMedCentralPubMedCrossRefGoogle Scholar
  12. Croteau-Chonka DC, Marvelle AF, Lange EM, Lee NR, Adair LS, Lange LA et al (2011) Genome-wide association study of anthropometric traits and evidence of interactions with age and study year in Filipino women. Obesity 19:1019–1027PubMedCentralPubMedCrossRefGoogle Scholar
  13. Emerging Risk Factors Collaboration (ERFC) Writing Committee (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302:1993–2000CrossRefGoogle Scholar
  14. Fava C, Danese E, Montagnana M, Sjögren M, Almgren M, Guidi GC et al (2011) A variant upstream of the CDH13 adiponectin receptor gene and metabolic syndrome in Swedes. Am J Cardiol 108:1432–1437PubMedCrossRefGoogle Scholar
  15. Feng S, Wang S, Chen C–C, Lan L (2011) GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits. BMC Genet 12:12PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS, Atwood LD (2007) Genome-wide association to body mass index and waist circumference: the Framingham heart study 100 K project. BMC Med Genet 8(Suppl 1):S18PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369PubMedCrossRefGoogle Scholar
  18. Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hedrick P, Kumar S (2001) Mutations and linkage disequilibrium in human mtDNA. Eur J Hum Genet 9:969–972PubMedCrossRefGoogle Scholar
  20. Higgins M, Province M, Heiss G, Eckfeldt J, Ellison RC, Folsom AR et al (1996) NHLBI family heart study: objectives and design. Am J Epidemiol 143:1219–1228PubMedCrossRefGoogle Scholar
  21. Jee SH, Sull JW, Lee JE, Shin C, Park J, Kimm H et al (2010) Adiponectin concentration: a genome-wide association study. Am J Hum Genet 87:545–552PubMedCentralPubMedCrossRefGoogle Scholar
  22. Johansson A, Marroni F, Hayward C, Franklin CS, Kirichenko AV, Jonasson I et al (2010) Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene. Obesity 18:803–808PubMedCrossRefGoogle Scholar
  23. Kabagambe EK, Ordovas JM, Tsai MY, Borecki IB, Hopkins PN, Glasser SP et al (2009) Smoking, inflammatory patterns and postprandial hypertriglyceridemia. Atherosclerosis 203:633–639PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C et al (2007) A genome-wide association study for blood lipid phenotypes in the Framingham heart study. BMC Med Genet 8(Suppl 1):S17PubMedCentralPubMedCrossRefGoogle Scholar
  25. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S et al (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40:1253–1260PubMedCentralPubMedCrossRefGoogle Scholar
  26. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ et al (2007) Framingham heart study 100 K project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8(Suppl 1):S3PubMedCentralPubMedCrossRefGoogle Scholar
  27. Li Y, Willer CJ, Sanna S, Abecasis GR (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406PubMedCentralPubMedCrossRefGoogle Scholar
  28. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834PubMedCentralPubMedCrossRefGoogle Scholar
  29. Ling H, Waterworth DM, Stirnadel HA, Pollin TI, Barter PJ, Kesäniemi YA et al (2009) Genome-wide linkage and association analyses to identify genes influencing adiponectin levels: the GEMS Study. Obesity 17:737–744PubMedCentralPubMedCrossRefGoogle Scholar
  30. Liu J, Sempos CT, Donahue RP, Dorn J, Trevisan M, Grundy SM (2006) Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol 98:1363–1368PubMedCrossRefGoogle Scholar
  31. Madsen KS, Miller JP, Province MA (1986) The use of an extended baseline period in the evaluation of treatment in a longitudinal Duchenne muscular dystrophy trial. Stat Med 5:231–241PubMedCrossRefGoogle Scholar
  32. Mahajan N, Ference BA, Arora N, Madhavan R, Bhattacharya P, Sudhakar R et al (2012) Role of non-high-density lipoprotein cholesterol in predicting cerebrovascular events in patients following myocardial infarction. Am J Cardiol 109:1694–1699PubMedCrossRefGoogle Scholar
  33. Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F et al (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Gen Genomes 7:1011–1023CrossRefGoogle Scholar
  34. Miller M, Ginsberg HN, Schaefer EJ (2008) Relative atherogenicity and predictive value of non high-density lipoprotein cholesterol for coronary heart disease. Am J Cardiol 101:1003–1008PubMedCrossRefGoogle Scholar
  35. Mitchell BD, McArdle PF, Shen H, Rampersaud E, Pollin TI, Bielak LF et al (2008) The genetic response to short term interventions affecting cardiovascular function: rationale and design of the heredity and phenotype intervention (HAPI) heart study. Am Heart J 155:823–828PubMedCentralPubMedCrossRefGoogle Scholar
  36. Muller JC (2004) Linkage disequilibrium for different scales and applications. Brief Bioinfo 5:355–364CrossRefGoogle Scholar
  37. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N et al (2009) Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 18:2288–2296PubMedCentralPubMedCrossRefGoogle Scholar
  38. Patsch JR, Miesenbock G, Hopferwieser T, Mühlberger V, Knapp E, Dunn JK et al (1992) Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 12:1336–1345PubMedCrossRefGoogle Scholar
  39. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  40. Province MA (2001) The significance of not finding a gene. Am J Hum Genet 69:660–663PubMedCentralPubMedCrossRefGoogle Scholar
  41. Province MA, Borecki IB (2013) A correlated meta-analysis strategy for data mining ‘omic’ scans. Pac Symp Biocomput 18:236–246Google Scholar
  42. Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983CrossRefGoogle Scholar
  43. Robinson JG (2009) Are you targeting non-high-density lipoprotein cholesterol? J Am Coll Cardiol 55:42–44PubMedCrossRefGoogle Scholar
  44. Robinson JG (2010) Low high-density lipoprotein cholesterol and chronic disease risk marker or causal? J Am Coll Cardiol 55:2855–2857PubMedCrossRefGoogle Scholar
  45. Shia WC, Ku TH, Tsao YM, Hsia CH, Chang YM, Huang CH et al (2011) Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genom 12(Suppl 3):S23CrossRefGoogle Scholar
  46. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713PubMedCentralPubMedCrossRefGoogle Scholar
  47. Welcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  48. Wojczynski MK, Gao G, Borecki IB, Hopkins PN, Parnell L, Lai CQ et al (2010) Apolipoprotein B genetic variants modify the response to fenofibrate: a GOLDN study. J Lipid Res 51:3316–3323PubMedCentralPubMedCrossRefGoogle Scholar
  49. Yang Q, Kathiresan S, Lin JP, Tofler GH, O’Donnell CJ (2007) Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S12PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ping An
    • 1
    Email author
  • Robert J. Straka
    • 2
  • Toni I. Pollin
    • 3
  • Mary F. Feitosa
    • 1
  • Mary K. Wojczynski
    • 1
  • E. Warwick Daw
    • 1
  • Jeffrey R. O’Connell
    • 3
  • Quince Gibson
    • 3
  • Kathleen A. Ryan
    • 3
  • Paul N. Hopkins
    • 5
  • Michael Y. Tsai
    • 6
  • Chao-Qiang Lai
    • 7
  • Michael A. Province
    • 1
  • Jose M. Ordovas
    • 7
    • 8
    • 9
  • Alan R. Shuldiner
    • 3
    • 4
  • Donna K. Arnett
    • 10
  • Ingrid B. Borecki
    • 1
  1. 1.Department of Genetics Division of Statistical Genomics (Campus Box 8506)Washington University School of MedicineSt. LouisUSA
  2. 2.Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Geriatric Research and Education Clinical CenterBaltimore Veterans Administration Medical CenterBaltimoreUSA
  5. 5.Department of Internal MedicineUniversity of Utah Health Sciences CenterSalt Lake CityUSA
  6. 6.Department of Laboratory Medicine and Pathology, School of MedicineUniversity of MinnesotaMinneapolisUSA
  7. 7.Nutrition and Genomics Laboratory, US Department of Agriculture Human Nutrition Research Center on AgingTufts UniversityBostonUSA
  8. 8.IMDEA-AlimentacionMadridSpain
  9. 9.Department of Cardiovascular Epidemiology and Population GeneticsCentro Nacional de Investigacions CardiovascularesMadridSpain
  10. 10.Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations