Advertisement

Human Genetics

, Volume 133, Issue 6, pp 801–811 | Cite as

A novel variant in the 3′ UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH’s binding

  • Tao Zeng
  • Zhao-Fei Dong
  • Shu-Jing Liu
  • Rui-Ping Wan
  • Ling-Jia Tang
  • Ting Liu
  • Qi-Hua Zhao
  • Yi-Wu Shi
  • Yong-Hong Yi
  • Wei-Ping Liao
  • Yue-Sheng LongEmail author
Original Investigation

Abstract

Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3′ UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3′ UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3′ UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH’s binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3′-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3′-UTR variants and SCN1A-related diseases.

Keywords

mRNA Stability Ketogenic Diet Reporter Gene Expression Mutation Construct SCN1A Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all the subjects and their families for their help with this work. We are grateful to the He Shanheng Charity Foundation for contributing to the development of this institute. This work was supported by the National Natural Science Foundation of China (Grant Number 31070928 and 81371436 to Y.S.L., 81271434 to W.P.L., 81171073 to Y.H.Y. and 81071045 to Y.W.S.), the Guangzhou Scholar Project (Grant Number 10A011G to Y.S.L.) and the Scientific Research of Guangzhou Municipal Colleges and Universities (Grant Number 10A211 to Y.S.L.).

Conflict of interest

None declared.

Supplementary material

439_2014_1422_MOESM1_ESM.pdf (236 kb)
Supplementary material 1 (PDF 235 kb)

References

  1. Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3′ UTR ends. Trends Cell Biol 19:465–474PubMedCrossRefGoogle Scholar
  2. Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S, Kalkkinen N, Ehsan A, Kontula KK, Lehtonen JY (2009) Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucl Acids Res 37:2346–2358PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48:43–58PubMedCrossRefGoogle Scholar
  4. Chatterjee S, Pal JK (2009) Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 101:251–262PubMedCrossRefGoogle Scholar
  5. Chen JM, Ferec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview. Hum Genet 120:1–21PubMedCrossRefGoogle Scholar
  6. Claes L, Ceulemans B, Audenaert D, Smets K, Lofgren A, Del-Favero J, Ala-Mello S, Basel-Vanagaite L, Plecko B, Raskin S, Thiry P, Wolf NI, Van Broeckhoven C, De Jonghe P (2003) De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 21:615–621PubMedCrossRefGoogle Scholar
  7. Deng GF, Qin JM, Sun XS, Kuang ZY, Su T, Zhao QH, Shi YW, Liu XR, Yu MJ, Yi YH, Liao WP, Long YS (2011) Promoter analysis of mouse Scn3a gene and regulation of the promoter activity by GC box and CpG methylation. J Mol Neurosci 44:115–121PubMedCrossRefGoogle Scholar
  8. Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, Keren B, Abert B, Gautier A, Baulac S, Arzimanoglou A, Cazeneuve C, Nabbout R, LeGuern E (2009) Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 46:183–191PubMedCrossRefGoogle Scholar
  9. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AMJM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet (North American Edition) 366:371–377Google Scholar
  10. Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O (2005) Severe myoclonic epilepsy in infancy (Dravet syndorme). In: Roger J (ed) Epileptic syndromes in infancy, childhood and adolescence. John Libbey Eurotext Ltd, Montrouge, pp 89–113Google Scholar
  11. Dutton SB, Escayg A (2008) Genetic influences on ketogenic diet efficacy. Epilepsia 49(Suppl 8):67–69PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dutton SB, Sawyer NT, Kalume F, Jumbo-Lucioni P, Borges K, Catterall WA, Escayg A (2011) Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia 52:2050–2056PubMedCentralPubMedCrossRefGoogle Scholar
  13. Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, St Clair D, Prince JA, Brookes AJ (2001) SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet 17:407–413PubMedCrossRefGoogle Scholar
  14. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 24:343–345PubMedCrossRefGoogle Scholar
  15. Fejerman N, Caraballo R, Cersosimo R (2005) Ketogenic diet in patients with Dravet syndrome and myoclonic epilepsies in infancy and early childhood. Adv Neurol 95:299–305PubMedGoogle Scholar
  16. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC, Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vatn MH, Mathew CG, Schreiber S (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323PubMedCrossRefGoogle Scholar
  17. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, Takahashi Y, Fukushima K, Watanabe M, Hara K, Morikawa T, Yagi K, Yamakawa K, Inoue Y (2003) Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic–clonic seizures. Brain 126:531–546PubMedCrossRefGoogle Scholar
  18. Fukuma G, Hirose S, Sugawara T, Ito M, Nagafuji H, Wada K, Kaneko S, Yamakawa K, Mitsudome A (2001) Two novel mutations of the voltage-gated Na+ channel α1 subunit gene Nav1.1 (SCN1A) found in individuals with febrile seizures (FS) associated with afebrile partial seizures. Epilepsia 42:18–19CrossRefGoogle Scholar
  19. Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, Zuberi SM, Sadleir LG, Andermann E, Gill D, Farrell K, Connolly M, Stanley T, Harbord M, Andermann F, Wang J, Batish SD, Jones JG, Seltzer WK, Gardner A, Sutherland G, Berkovic SF, Mulley JC, Scheffer IE (2007) The spectrum of SCNIA-related infantile epileptic encephalopathies. Brain 130:843–852PubMedCrossRefGoogle Scholar
  20. Ikeda E, Achen MG, Breier G, Risau W (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270:19761–19766PubMedCrossRefGoogle Scholar
  21. Kondo S, Kubota S, Mukudai Y, Nishida T, Yoshihama Y, Shirota T, Shintani S, Takigawa M (2011) Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 405:382–387PubMedCrossRefGoogle Scholar
  22. Krubitzer L, Huffman KJ (2000) A realization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype. Brain Behav Evol 55:322–335PubMedCrossRefGoogle Scholar
  23. Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nat Rev Genet 4:626–637PubMedCrossRefGoogle Scholar
  24. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407PubMedCrossRefGoogle Scholar
  25. Laschet JJ, Minier F, Kurcewicz I, Bureau MH, Trottier S, Jeanneteau F, Griffon N, Samyn B, Van Beeumen J, Louvel J, Sokoloff P, Pumain R (2004) Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition. J Neurosci 24:7614–7622PubMedCrossRefGoogle Scholar
  26. Laschet JJ, Kurcewicz I, Minier F, Trottier S, Khallou-Laschet J, Louvel J, Gigout S, Turak B, Biraben A, Scarabin JM, Devaux B, Chauvel P, Pumain R (2007) Dysfunction of GABAA receptor glycolysis-dependent modulation in human partial epilepsy. Proc Natl Acad Sci USA 104:3472–3477PubMedCentralPubMedCrossRefGoogle Scholar
  27. Leclerc GJ, Leclerc GM, Barredo JC (2002) Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int 2:1PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lefevre F, Aronson N (2000) Ketogenic diet for the treatment of refractory epilepsy in children: a systematic review of efficacy. Pediatrics 105:E46PubMedCrossRefGoogle Scholar
  29. Liao WP, Shi YW, Long YS, Zeng Y, Li T, Yu MJ, Su T, Deng P, Lei ZG, Xu SJ, Deng WY, Liu XR, Sun WW, Yi YH, Xu ZC, Duan S (2010) Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: associated with loss of function of Na(v) 1.1. Epilepsia 51:1669–1678PubMedCrossRefGoogle Scholar
  30. Long YS, Zhao QH, Su T, Cai YL, Zeng Y, Shi YW, Yi YH, Chang HH, Liao WP (2008) Identification of the promoter region and the 5′-untranslated exons of the human voltage-gated sodium channel Na(v)1.1 gene (SCN1A) and enhancement of gene expression by the 5′-untranslated exons. J Neurosci Res 86:3375–3381PubMedCrossRefGoogle Scholar
  31. Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM, Frazer KA (2000) Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288:136–140PubMedCrossRefGoogle Scholar
  32. Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115:2010–2017PubMedCentralPubMedCrossRefGoogle Scholar
  33. Nabbout R, Copioli C, Chipaux M, Chemaly N, Desguerre I, Dulac O, Chiron C (2011) Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: a prospective pilot study. Epilepsia 52:e54–e57PubMedCrossRefGoogle Scholar
  34. Nagy E, Rigby WF (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem 270:2755–2763PubMedCrossRefGoogle Scholar
  35. Nakayama T, Ogiwara I, Ito K, Kaneda M, Mazaki E, Osaka H, Ohtani H, Inoue Y, Fujiwara T, Uematsu M, Haginoya K, Tsuchiya S, Yamakawa K (2010) Deletions of SCN1A 5′ genomic region with promoter activity in Dravet syndrome. Hum Mutat 31:820–829PubMedCrossRefGoogle Scholar
  36. Nicholls C, Li H, Liu JP (2012) GAPDH: a common enzyme with uncommon functions. Clin Exp Pharmacol Physiol 39:674–679PubMedCrossRefGoogle Scholar
  37. Noh HS, Lee HP, Kim DW, Kang SS, Cho GJ, Rho JM, Choi WS (2004) A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Brain Res Mol Brain Res 129:80–87PubMedCrossRefGoogle Scholar
  38. Ohmori I, Kahlig KM, Rhodes TH, Wang DW, George AL Jr (2006) Nonfunctional SCN1A is common in severe myoclonic epilepsy of infancy. Epilepsia 47:1636–1642PubMedCrossRefGoogle Scholar
  39. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772PubMedCentralPubMedCrossRefGoogle Scholar
  40. Pumain R, Ahmed MS, Kurcewicz I, Trottier S, Louvel J, Turak B, Devaux B, Laschet J (2008) Lability of GABAA receptor function in human partial epilepsy: possible relationship to hypometabolism. Epilepsia 49(Suppl 8):87–90PubMedCrossRefGoogle Scholar
  41. Rhodes TH, Lossin C, Wang DW, Vanoye CG, George AL Jr (2004) Functional characterization of SCN1A sodium channel mutations associated with severe myoclonic epilepsy of infancy (SMEI). Biophys J 86:424aGoogle Scholar
  42. Rodriguez-Pascual F, Redondo-Horcajo M, Magan-Marchal N, Lagares D, Martinez-Ruiz A, Kleinert H, Lamas S (2008) Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 28:7139–7155PubMedCentralPubMedCrossRefGoogle Scholar
  43. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Prot 3:1101–1108CrossRefGoogle Scholar
  44. Schork NJ, Fallin D, Lanchbury JS (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58:250–264PubMedCrossRefGoogle Scholar
  45. Shyu AB, Wilkinson MF, van Hoof A (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27:471–481PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sirover MA (2012) Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem 113:2193–2200PubMedCentralPubMedCrossRefGoogle Scholar
  47. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237PubMedCrossRefGoogle Scholar
  48. Sugawara T, Mazaki-Miyazaki E, Ito M, Nagafuji H, Fukuma G, Mitsudome A, Wada K, Kaneko S, Hirose S, Yamakawa K (2001) Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures. Neurology 57:703–705PubMedCrossRefGoogle Scholar
  49. Sugawara T, Mazaki-Miyazaki E, Fukushima K, Shimomura J, Fujiwara T, Hamano S, Inoue Y, Yamakawa K (2002) Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 58:1122–1124PubMedCrossRefGoogle Scholar
  50. Sugawara T, Tsurubuchi Y, Fujiwara T, Mazaki-Miyazaki E, Nagata K, Montal M, Inoue Y, Yamakawa K (2003) Nav 1.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents. Epilep Res 54:201–207CrossRefGoogle Scholar
  51. Thiele EA (2003) Assessing the efficacy of antiepileptic treatments: the ketogenic diet. Epilepsia 44(Suppl 7):26–29PubMedCrossRefGoogle Scholar
  52. Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Sign 23:317–323CrossRefGoogle Scholar
  53. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287PubMedCrossRefGoogle Scholar
  54. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychia 8:186–194CrossRefGoogle Scholar
  55. Whatley SD, Badminton MN (2013) Role of genetic testing in the management of patients with inherited porphyria and their families. Ann Clin Biochem 50:204–216PubMedCrossRefGoogle Scholar
  56. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3:e7PubMedCentralPubMedCrossRefGoogle Scholar
  57. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, Liu P, Hao X, Zhang W, Chen K (2011) Functional SNP in the microRNA-367 binding site in the 3′ UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci USA 108:13653–13658PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445PubMedCentralPubMedGoogle Scholar
  59. Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK (2008) The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 6:1375–1384PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tao Zeng
    • 1
  • Zhao-Fei Dong
    • 1
  • Shu-Jing Liu
    • 1
  • Rui-Ping Wan
    • 1
  • Ling-Jia Tang
    • 1
  • Ting Liu
    • 1
  • Qi-Hua Zhao
    • 1
  • Yi-Wu Shi
    • 1
  • Yong-Hong Yi
    • 1
  • Wei-Ping Liao
    • 1
  • Yue-Sheng Long
    • 1
    Email author
  1. 1.Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaInstitute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations