Advertisement

Human Genetics

, Volume 133, Issue 3, pp 247–257 | Cite as

Environmental exposure and mitochondrial epigenetics: study design and analytical challenges

  • Hyang-Min ByunEmail author
  • Andrea A. Baccarelli
Review Paper

Abstract

The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.

Keywords

Mitochondrial Genome Mitochondrial Dysfunction Environmental Exposure NADH Dehydrogenase Mitochondrial Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baer RJ, Dubin DT (1981) Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucleic Acids Res 9:323–337PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6:e20220PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4:17–27PubMedCrossRefGoogle Scholar
  4. Bellizzi D, D’Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20(6):537–547PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bienertova-Vasku J, Sana J, Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336:1–7PubMedCrossRefGoogle Scholar
  6. Borchert A, Wolf NI, Wilichowski E (2002) Current concepts of mitochondrial disorders in childhood. Semin Pediatr Neurol 9:151–159PubMedCrossRefGoogle Scholar
  7. Bouhlal Y, Martinez S, Gong H, Dumas K, Shieh JT (2013) Twin mitochondrial sequence analysis. Mol Genet Genomic Med 1:174–186PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360PubMedCrossRefGoogle Scholar
  9. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299PubMedCentralPubMedCrossRefGoogle Scholar
  10. Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252PubMedCrossRefGoogle Scholar
  12. Chen H, Dzitoyeva S, Manev H (2012) Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690:51–59PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636PubMedCentralPubMedCrossRefGoogle Scholar
  14. Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol Biosyst 7:1523–1536PubMedCrossRefGoogle Scholar
  15. Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, Van Oostveldt PM, Vaux DJ (2005) Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell 16:997–1010PubMedCentralPubMedCrossRefGoogle Scholar
  16. Conley KE, Marcinek DJ, Villarin J (2007) Mitochondrial dysfunction and age. Curr Opin Clin Nutr Metab Care 10:688–692PubMedCrossRefGoogle Scholar
  17. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232PubMedCrossRefGoogle Scholar
  18. Duarte FV, Gomes AP, Teodoro JS, Varela AT, Moreno AJ, Rolo AP, Palmeira CM (2013) Dibenzofuran-induced mitochondrial dysfunction: interaction with ANT carrier. Toxicol In Vitro 27:2160–2168PubMedCrossRefGoogle Scholar
  19. Dubin DT, Taylor RH, Davenport LW (1978) Methylation status of 13S ribosomal RNA from hamster mitochondria: the presence of a novel riboside, N4-methylcytidine. Nucleic Acids Res 5:4385–4397PubMedCentralPubMedCrossRefGoogle Scholar
  20. Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49PubMedCrossRefGoogle Scholar
  21. Dzitoyeva S, Chen H, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33:2881–2891PubMedCentralPubMedCrossRefGoogle Scholar
  22. Feng S, Xiong L, Ji Z, Cheng W, Yang H (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6:125–130PubMedGoogle Scholar
  23. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609PubMedCrossRefGoogle Scholar
  24. Grattagliano I, Russmann S, Diogo C, Bonfrate L, Oliveira PJ, Wang DQ, Portincasa P (2011) Mitochondria in chronic liver disease. Curr Drug Targets 12:879–893PubMedCrossRefGoogle Scholar
  25. Griffiths EJ (2012) Mitochondria and heart disease. Adv Exp Med Biol 942:249–267PubMedCrossRefGoogle Scholar
  26. Haddad DM, Vilain S, Vos M, Esposito G, Matta S, Kalscheuer VM, Craessaerts K, Leyssen M, Nascimento RM, Vianna-Morgante AM, De Strooper B, Van Esch H, Morais VA, Verstreken P (2013) Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol Cell 50:831–843PubMedCrossRefGoogle Scholar
  27. Hansen A (2007) Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis. BMC Neurosci 8:64PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hashiguchi K, Zhang-Akiyama QM (2009) Establishment of human cell lines lacking mitochondrial DNA. Methods Mol Biol 554:383–391PubMedCrossRefGoogle Scholar
  29. Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24:13–18PubMedCrossRefGoogle Scholar
  30. Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 33:2683–2690PubMedCentralPubMedCrossRefGoogle Scholar
  32. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86CrossRefGoogle Scholar
  33. Iacobazzi V, Castegna A, Infantino V, Andria G (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34PubMedCrossRefGoogle Scholar
  34. Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, Iacobazzi V (2011) Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102:378–382PubMedCrossRefGoogle Scholar
  35. James AM, Collins Y, Logan A, Murphy MP (2012) Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab 23:429–434PubMedCrossRefGoogle Scholar
  36. Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632PubMedCrossRefGoogle Scholar
  39. Kucej M, Kucejova B, Subramanian R, Chen XJ, Butow RA (2008) Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci 121:1861–1868PubMedCrossRefGoogle Scholar
  40. Kudriashova IB, Kirnos MD, Vaniushin BF (1976) DNA-methylase activities from animal mitochondria and nuclei: different specificity of DNA methylation. Biokhimiia 41:1968–1977PubMedGoogle Scholar
  41. Kuriyama Y, Luck DJ (1974) Methylation and processing of mitochondrial ribosomal RNAs in poky and wild-type Neurospora crassa. J Mol Biol 83:253–266PubMedCrossRefGoogle Scholar
  42. Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM (2011) Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol Regul Integr Comp Physiol 300:R21–R31PubMedCrossRefGoogle Scholar
  43. Lee HC, Wei YH (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327PubMedCrossRefGoogle Scholar
  44. Leigh-Brown S, Enriquez JA, Odom DT (2010) Nuclear transcription factors in mammalian mitochondria. Genome Biol 11:215PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lewin R (1987) The unmasking of mitochondrial Eve. Science 238:24–26PubMedCrossRefGoogle Scholar
  46. Lin Y, Sun X, Qiu L, Wei J, Huang Q, Fang C, Ye T, Kang M, Shen H, Dong S (2013) Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis 4:e460PubMedCentralPubMedCrossRefGoogle Scholar
  47. Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473PubMedCrossRefGoogle Scholar
  48. Maekawa M, Taniguchi T, Higashi H, Sugimura H, Sugano K, Kanno T (2004) Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clin Chem 50:1480–1481PubMedCrossRefGoogle Scholar
  49. Manev H, Dzitoyeva S, Chen H (2012) Mitochondrial DNA: a blind spot in neuroepigenetics. Biomol Concepts 3:107–115PubMedCentralPubMedCrossRefGoogle Scholar
  50. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198PubMedCrossRefGoogle Scholar
  51. Martinez-Fernandez E, Gil-Peralta A, Garcia-Lozano R, Chinchon I, Aguilera I, Fernandez-Lopez O, Arenas J, Campos Y, Bautista J (2001) Mitochondrial disease and stroke. Stroke 32:2507–2510PubMedCrossRefGoogle Scholar
  52. Mathews CE, McGraw RA, Dean R, Berdanier CD (1999) Inheritance of a mitochondrial DNA defect and impaired glucose tolerance in BHE/Cdb rats. Diabetologia 42:35–40PubMedCrossRefGoogle Scholar
  53. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS (2011) The human mitochondrial transcriptome. Cell 146:645–658PubMedCentralPubMedCrossRefGoogle Scholar
  54. Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136:3038–3050PubMedCrossRefGoogle Scholar
  55. Motorin Y, Helm M (2011) RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2:611–631PubMedCrossRefGoogle Scholar
  56. Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837PubMedCrossRefGoogle Scholar
  57. Mushkambarov NN, Votrin II, Debov SS (1976) Methylation of preformed DNA in rat liver cell nuclei and mitochondria. Dokl Akad Nauk SSSR 229:1255–1257PubMedGoogle Scholar
  58. Nass MM (1973) Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. J Mol Biol 80:155–175PubMedCrossRefGoogle Scholar
  59. Newsholme P, Gaudel C, Krause M (2012) Mitochondria and diabetes. An intriguing pathogenetic role. Adv Exp Med Biol 942:235–247PubMedCrossRefGoogle Scholar
  60. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159PubMedCrossRefGoogle Scholar
  61. Pickles S, Destroismaisons L, Peyrard SL, Cadot S, Rouleau GA, Brown RH Jr, Julien JP, Arbour N, Vande Velde C (2013) Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 22:3947–3959PubMedCrossRefGoogle Scholar
  62. Pirola CJ, Gianotti TF, Burgueno AL, Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Castano GO, Sookoian S (2013) Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62:1356–1363PubMedCrossRefGoogle Scholar
  63. Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M (1984) Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–4824PubMedCentralPubMedCrossRefGoogle Scholar
  64. Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A (2007) The putative role of mitochondrial dysfunction in hypertension. Clin Exp Hypertens 29:427–434PubMedCrossRefGoogle Scholar
  65. Rebelo AP, Williams SL, Moraes CT (2009) In vivo methylation of mtDNA reveals the dynamics of protein–mtDNA interactions. Nucleic Acids Res 37:6701–6715PubMedCentralPubMedCrossRefGoogle Scholar
  66. Rorbach J, Minczuk M (2012) The post-transcriptional life of mammalian mitochondrial RNA. Biochem J 444:357–373PubMedCrossRefGoogle Scholar
  67. Schrier SA, Falk MJ (2011) Mitochondrial disorders and the eye. Curr Opin Ophthalmol 22:325–331PubMedCentralPubMedCrossRefGoogle Scholar
  68. Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542PubMedCrossRefGoogle Scholar
  69. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, Pu M, Sharma S, You YH, Wang L, Diamond-Stanic M, Lindenmeyer MT, Forsblom C, Wu W, Ix JH, Ideker T, Kopp JB, Nigam SK, Cohen CD, Groop PH, Barshop BA, Natarajan L, Nyhan WL, Naviaux RK (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24:1901–1912PubMedCrossRefGoogle Scholar
  70. Shmookler Reis RJ, Goldstein S (1983) Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 258:9078–9085PubMedGoogle Scholar
  71. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 108:3630–3635PubMedCrossRefGoogle Scholar
  72. Shrikhande DY, Kalakoti P, Syed MM, Ahya K, Singh G (2010) A rare mitochondrial disorder: Leigh syndrome—a case report. Ital J Pediatr 36:62PubMedCentralPubMedCrossRefGoogle Scholar
  73. Song L, James SR, Kazim L, Karpf AR (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510PubMedCrossRefGoogle Scholar
  74. Stuwe SH, Goetze O, Lukas C, Klotz P, Hoffmann R, Banasch M, Orth M, Schmidt WE, Gold R, Saft C (2013) Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology 80:743–746PubMedCrossRefGoogle Scholar
  75. Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA (2013) Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 65C:595–606CrossRefGoogle Scholar
  76. Sun C, Reimers LL, Burk RD (2011) Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121:59–63PubMedCentralPubMedCrossRefGoogle Scholar
  77. Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y (2013) High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 3:567–576PubMedCentralPubMedCrossRefGoogle Scholar
  78. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402PubMedCentralPubMedCrossRefGoogle Scholar
  79. Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383PubMedCrossRefGoogle Scholar
  80. Vamecq J, Dessein AF, Fontaine M, Briand G, Porchet N, Latruffe N, Andreolotti P, Cherkaoui-Malki M (2012) Mitochondrial dysfunction and lipid homeostasis. Curr Drug Metab 13:1388–1400PubMedCrossRefGoogle Scholar
  81. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394PubMedCrossRefGoogle Scholar
  82. Yelverton JC, Arnos K, Xia XJ, Nance WE, Pandya A, Dodson KM (2013) The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol Head Neck Surg 148:1017–1022PubMedCrossRefGoogle Scholar
  83. Yorns WR Jr, Valencia I, Jayaraman A, Sheth S, Legido A, Goldenthal MJ (2012) Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF). J Child Neurol 27:398–401PubMedCrossRefGoogle Scholar
  84. Yu E, Mercer J, Bennett M (2012) Mitochondria in vascular disease. Cardiovasc Res 95:173–182PubMedCrossRefGoogle Scholar
  85. Zhang ZW, Cheng J, Xu F, Chen YE, Du JB, Yuan M, Zhu F, Xu XC, Yuan S (2011) Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 63:560–565PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Exposure Epidemiology and Risk Program, Laboratory of Environmental EpigeneticsHarvard School of Public HealthBostonUSA

Personalised recommendations