Advertisement

Human Genetics

, Volume 132, Issue 12, pp 1371–1382 | Cite as

Gene–smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort

  • Cavin Ward-CavinessEmail author
  • Carol Haynes
  • Colette Blach
  • Elaine Dowdy
  • Simon G. Gregory
  • Svati H. Shah
  • Benjamin D. Horne
  • William E. Kraus
  • Elizabeth R. Hauser
Original Investigation

Abstract

We performed a gene–smoking interaction analysis using families from an early-onset coronary artery disease cohort (GENECARD). This analysis was focused on validating and expanding results from previous studies implicating single nucleotide polymorphisms (SNPs) on chromosome 3 in smoking-mediated coronary artery disease. We analyzed 430 SNPs on chromosome 3 and identified 16 SNPs that showed a gene–smoking interaction at P < 0.05 using association in the presence of linkage—ordered subset analysis, a method that uses permutations of the data to empirically estimate the strength of the association signal. Seven of the 16 SNPs were in the Rho-GTPase pathway indicating a 1.87-fold enrichment for this pathway. A meta-analysis of gene–smoking interactions in three independent studies revealed that rs9289231 in KALRN had a Fisher’s combined P value of 0.0017 for the interaction with smoking. In a gene-based meta-analysis KALRN had a P value of 0.026. Finally, a pathway-based analysis of the association results using WebGestalt revealed several enriched pathways including the regulation of the actin cytoskeleton pathway as defined by the Kyoto Encyclopedia of Genes and Genomes.

Keywords

Coronary Artery Disease Significant SNPs Linkage Peak Chromosome 3q13 Region Allelic Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all of the volunteers for their participation in the GENECARD study. We would also like to acknowledge the essential contributions of the following individuals: the GENECARD Investigators Network, and the faculty and staff at the Center for Human Genetics for their innumerable contributions to this manuscript. This work was supported by NIH grants HL073389 and MH595228 and an award from the Neurosciences Education and Research Foundation. This work was supported in part by an appointment to the Research Participation Program at the Office of Research and Development, US Environmental Protection Agency.

Supplementary material

439_2013_1339_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 45 kb)

References

  1. Ambrose JA, Barua RS (2004) The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 43:1731–1737. doi: 10.1016/j.jacc.2003.12.047 PubMedCrossRefGoogle Scholar
  2. Anazawa T, Dimayuga PC, Li H, Tani S, Bradfield J, Chyu K-Y, Kaul S, Shah PK, Cercek B (2004) Effect of exposure to cigarette smoke on carotid artery intimal thickening: the role of inducible NO synthase. Arterioscler Thromb Vasc Biol 24:1652–1658. doi: 10.1161/01.ATV.0000139925.84444.ad PubMedCrossRefGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  4. Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, Schminke U, Post WS, Smith AV, Cupples LA, Markus HS, Schmidt R, Huffman JE, Lehtimaki T, Baumert J, Munzel T, Heckbert SR, Dehghan A, North K, Oostra B, Bevan S, Stoegerer E-M, Hayward C, Raitakari O, Meisinger C, Schillert A, Sanna S, Volzke H, Cheng Y-C, Thorsson B, Fox CS, Rice K, Rivadeneira F, Nambi V, Halperin E, Petrovic KE, Peltonen L, Wichmann HE, Schnabel RB, Dorr M, Parsa A, Aspelund T, Demissie S, Kathiresan S, Reilly MP, Taylor K, Uitterlinden A, Couper DJ, Sitzer M, Kahonen M, Illig T, Wild PS, Orru M, Ludemann J, Shuldiner AR, Eiriksdottir G, White CC, Rotter JI, Hofman A, Seissler J, Zeller T, Usala G, Ernst F, Launer LJ, D’Agostino RB, O’Leary DH, Ballantyne C, Thiery J, Ziegler A, Lakatta EG, Chilukoti RK, Harris TB, Wolf PA, Psaty BM, Polak JF, Li X, Rathmann W, Uda M, Boerwinkle E, Klopp N, Schmidt H, Wilson JF, Viikari J, Koenig W, Blankenberg S, Newman AB, Witteman J, Heiss G, Duijn Cv, Scuteri A, Homuth G, Mitchell BD, Gudnason V, O’Donnell CJ (2011) Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 43:940–947. http://www.nature.com/ng/journal/v43/n10/abs/ng.920.html#supplementary-information
  5. Bowden DW, Rudock M, Ziegler J, Lehtinen AB, Xu J, Wagenknecht LE, Herrington D, Rich SS, Freedman BI, Carr JJ, Langefeld CD (2006) Coincident linkage of type 2 diabetes, metabolic syndrome, and measures of cardiovascular disease in a genome scan of the diabetes heart study. Diabetes 55:1985–1994PubMedCrossRefGoogle Scholar
  6. Chiodini BD, Lewis CM (2003) Meta-analysis of 4 coronary heart disease genome-wide linkage studies confirms a susceptibility locus on chromosome 3q. Arterioscler Thromb Vasc Biol 23:1863–1868. doi: 10.1161/01.ATV.0000093281.10213.DB PubMedCrossRefGoogle Scholar
  7. Chung RH, Hauser ER, Martin ER (2006) The APL test: extension to general nuclear families and haplotypes and examination of its robustness. Hum Hered 61:189–199. doi: 10.1159/000094774 PubMedCrossRefGoogle Scholar
  8. Chung R-H, Hauser ER, Martin ER (2007) Interpretation of simultaneous linkage and family-based association tests in genome screens. Genet Epidemiol 31:134–142. doi: 10.1002/gepi.20196 PubMedCrossRefGoogle Scholar
  9. Chung R-H, Schmidt S, Martin ER, Hauser ER (2008) Ordered-subset analysis (OSA) for family-based association mapping of complex traits. Genet Epidemiol 32:627–637. doi: 10.1002/gepi.20340 PubMedCrossRefGoogle Scholar
  10. Crosslin DR, Shah SH, Nelson SC, Haynes CS, Connelly JJ, Gadson S, Goldschmidt-Clermont PJ, Vance JM, Rose J, Granger CB, Seo D, Gregory SG, Kraus WE, Hauser ER (2009) Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis. Hum Genet 125:217–229. doi: 10.1007/s00439-008-0619-0 PubMedCrossRefGoogle Scholar
  11. Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28:812–819. doi: 10.1161/atvbaha.107.159327 PubMedCrossRefGoogle Scholar
  12. Franchini MPF, Mannucci PM (2008) The genetic basis of coronary artery disease: from candidate genes to whole genome analysis. Trends Cardiovasc Med 18:5CrossRefGoogle Scholar
  13. Hauser ER, Mooser V, Crossman DC, Haines JL, Jones CH, Winkelmann BR, Schmidt S, Scott WK, Roses AD, Pericak-Vance MA, Granger CB, Kraus WE (2003) Design of the genetics of early onset cardiovascular disease (GENECARD) study. Am Heart J 145:602–613PubMedCrossRefGoogle Scholar
  14. Hauser ER, Crossman DC, Granger CB, Haines JL, Jones CJH, Mooser V, McAdam B, Winkelmann BR, Wiseman AH, Muhlestein JB, Bartel AG, Dennis CA, Dowdy E, Estabrooks S, Eggleston K, Francis S, Roche K, Clevenger PW, Huang L, Pedersen B, Shah S, Schmidt S, Haynes C, West S, Asper D, Booze M, Sharma S, Sundseth S, Middleton L, Roses AD, Hauser MA, Vance JM, Pericak-Vance MA, Kraus WE (2004) A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD study. Am J Hum Genet 75:436–447. doi: 10.1086/423900 Google Scholar
  15. Heard-Costa NL, Zillikens MC, Monda KL, Johansson Å, Harris TB, Fu M, Haritunians T, Feitosa MF, Aspelund T, Eiriksdottir G, Garcia M, Launer LJ, Smith AV, Mitchell BD, McArdle PF, Shuldiner AR, Bielinski SJ, Boerwinkle E, Brancati F, Demerath EW, Pankow JS, Arnold AM, Chen Y-DI, Glazer NL, McKnight B, Psaty BM, Rotter JI, Amin N, Campbell H, Gyllensten U, Pattaro C, Pramstaller PP, Rudan I, Struchalin M, Vitart V, Gao X, Kraja A, Province MA, Zhang Q, Atwood LD, Dupuis J, Hirschhorn JN, Jaquish CE, O’Donnell CJ, Vasan RS, White CC, Aulchenko YS, Estrada K, Hofman A, Rivadeneira F, Uitterlinden AG, Witteman JCM, Oostra BA, Kaplan RC, Gudnason V, O’Connell JR, Borecki IB, van Duijn CM, Cupples LA, Fox CS, North KE (2009) NRXN3: is a novel locus for waist circumference: a genome-wide association study from the CHARGE consortium. PLoS Genet 5:e1000539. doi: 10.1371/journal.pgen.1000539 PubMedCrossRefGoogle Scholar
  16. Horne BD, Hauser ER, Wang L, Muhlestein JB, Anderson JL, Carlquist JF, Shah SH, Kraus WE (2009) Validation study of genetic associations with coronary artery disease on chromosome 3q13-21 and potential effect modification by smoking. Ann Hum Genet 73:551–558. doi: 10.1111/j.1469-1809.2009.00540.x PubMedCrossRefGoogle Scholar
  17. Horvath S, Xu X, Laird NM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9:301–306. doi: 10.1038/sj.ejhg.5200625 PubMedCrossRefGoogle Scholar
  18. Hoyt JC, Robbins RA, Habib M, Springall DR, Buttery LDK, Polak JM, Barnes PJ (2003) Cigarette smoke decreases inducible nitric oxide synthase in lung epithelial cells. Exp Lung Res 29:17–28. doi: 10.1080/01902140303759 PubMedCrossRefGoogle Scholar
  19. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  20. Kannel WB, D’Agostino RB, Belanger AJ (1987) Fibrinogen, cigarette smoking, and risk of cardiovascular disease: insights from the Framingham study. Am Heart J 113:1006–1010PubMedCrossRefGoogle Scholar
  21. Karolchik DHA, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32:4CrossRefGoogle Scholar
  22. Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, Arnett DK, Peloso GM, Ordovas JM, Cupples LA (2007) A genome-wide association study for blood lipid phenotypes in the Framingham heart study. BMC Med Genet 8(Suppl 1):S17. doi: 10.1186/1471-2350-8-S1-S17 PubMedCrossRefGoogle Scholar
  23. Krug TMH, Gouveia L, Sobral J, Xavier J, Gaspar G, Correia M, Viana-Baptista M, Simoes R, Pinto A, Taipa R, Ferreria C, Fontes J, Silva M, Gabriel J, Matos I, Lopes G, Ferro J, Vicente A, Oliveira S (2010) Kalirin: a novel genetic risk factor for ischemic stroke. Hum Genet 127:11. doi: 10.1007/s00439-010-0790-y Google Scholar
  24. Kushima I, Nakamura Y, Aleksic B, Ikeda M, Ito Y, Shiino T, Okochi T, Fukuo Y, Ujike H, Suzuki M, Inada T, Hashimoto R, Takeda M, Kaibuchi K, Iwata N, Ozaki N (2012) Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schiophr Bull 38(3):552–560Google Scholar
  25. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, Nettleton JA, King IB, Weng L-C, Bhattacharya S, Bandinelli S, Bis JC, Rich SS, Jacobs DR Jr, Cherubini A, McKnight B, Liang S, Gu X, Rice K, Laurie CC, Lumley T, Browning BL, Psaty BM, Chen Y-DI, Friedlander Y, Djousse L, Wu JHY, Siscovick DS, Uitterlinden AG, Arnett DK, Ferrucci L, Fornage M, Tsai MY, Mozaffarian D, Steffen LM (2011) Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium. PLoS Genet 7:e1002193. doi: 10.1371/journal.pgen.1002193 PubMedCrossRefGoogle Scholar
  26. Lesch K-P, Timmesfeld N, Renner T, Halperin R, Röser C, Nguyen T, Craig D, Romanos J, Heine M, Meyer J, Freitag C, Warnke A, Romanos M, Schäfer H, Walitza S, Reif A, Stephan D, Jacob C (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115:1573–1585. doi: 10.1007/s00702-008-0119-3 PubMedCrossRefGoogle Scholar
  27. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488. doi: 10.1161/circulationaha.105.537878 PubMedCrossRefGoogle Scholar
  28. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Global burden of disease and risk factors. Oxford University Press, New YorkCrossRefGoogle Scholar
  29. Maouche S, Schunkert H (2012) Strategies beyond genome-wide association studies for atherosclerosis. Arterioscler Thromb Vasc Biol 32:170–181. doi: 10.1161/atvbaha.111.232652 PubMedCrossRefGoogle Scholar
  30. Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73:1016–1026. doi: 10.1086/378779 PubMedCrossRefGoogle Scholar
  31. Milewicz DM, Kwartler CS, Papke CL, Regalado ES, Cao J, Reid AJ (2010) Genetic variants promoting smooth muscle cell proliferation can result in diffuse and diverse vascular diseases: evidence for a hyperplastic vasculomyopathy. Genet Med 12:196–203PubMedCrossRefGoogle Scholar
  32. Musunuru K, Kathiresan S (2010) Genetics of coronary artery disease. Annu Rev Genomics Hum Genet 11:91–108. doi: 10.1146/annurev-genom-082509-141637 PubMedCrossRefGoogle Scholar
  33. Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75:353–362. doi: 10.1086/423901 PubMedCrossRefGoogle Scholar
  34. Oksala N, Oksala A, Erkinjuntti T, Pohjasvaara T, Kunnas T, Vataja R, Kaste M, Karhunen P (2008) Long-term survival after ischemic stroke in postmenopausal women is affected by an interaction between smoking and genetic variation in nitric oxide synthases. Cerebrovasc Dis 26:250–258PubMedCrossRefGoogle Scholar
  35. Olsson S, Jood K, Melander O, Sjögren M, Norrving B, Nilsson M, Lindgren A, Jern C (2011) Lack of association between genetic variations in the KALRN region and ischemic stroke. Clin Biochem 44:1018–1020. doi: 10.1016/j.clinbiochem.2011.05.025 PubMedCrossRefGoogle Scholar
  36. Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S, Zhao J, Zhou X, Reveille JD, Jin L, Amos CI, Xiong M (2010) Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet 18:111–117. doi: 10.1038/ejhg.2009.115 PubMedCrossRefGoogle Scholar
  37. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337. doi: 10.1093/bioinformatics/btq419 PubMedCrossRefGoogle Scholar
  38. Rabiner CA, Mains RE, Eipper BA (2005) Kalirin: a dual rho guanine nucleotide exchange factor that is so much more than the sum of its many parts. Neurosci 11:148–160. doi: 10.1177/1073858404271250 Google Scholar
  39. Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, Lowenstein CJ (1999) Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem 274:993–999. doi: 10.1074/jbc.274.2.993 PubMedCrossRefGoogle Scholar
  40. Rudock M, Cox AJ, Ziegler J, Lehtinen A, Connelly J, Freedman B, Carr JJ, Langefeld C, Hauser E, Horne B, Bowden D (2011) Cigarette smoking status has a modifying effect on the association between polymorphisms in KALRN and measures of cardiovascular risk in the diabetes heart study. Genes Genomics 33:483–490. doi: 10.1007/s13258-011-0069-2 CrossRefGoogle Scholar
  41. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, Konig IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453. doi: 10.1056/NEJMoa072366 PubMedCrossRefGoogle Scholar
  42. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AFR, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NEE, Ellis SG, Elosua R, Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJP, Khaw K-T, Knowles JW, Kolovou G, Kong A, Laaksonen R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Mannucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, Merlini PA, Mooser V, Morgan T, Muhleisen TW, Muhlestein JB, Munzel T, Musunuru K, Nahrstaedt J, Nelson CP, Nothen MM, Olivieri O, et al. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338. http://www.nature.com/ng/journal/v43/n4/abs/ng.784.html#supplementary-information Google Scholar
  43. Shah SH, Kraus WE, Crossman DC, Granger CB, Haines JL, Jones CJ, Mooser V, Huang L, Haynes C, Dowdy E, Vega GL, Grundy SM, Vance JM, Hauser ER (2006) Serum lipids in the GENECARD study of coronary artery disease identify quantitative trait loci and phenotypic subsets on chromosomes 3q and 5q. Ann Hum Genet 70:738–748. doi: 10.1111/j.1469-1809.2006.00288.x PubMedCrossRefGoogle Scholar
  44. Shah SH, Hauser ER, Bain JR, Muehlbauer MJ, Haynes C, Stevens RD, Wenner BR, Dowdy ZE, Granger CB, Ginsburg GS, Newgard CB, Kraus WE (2009) High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 5:258. doi: 10.1038/msb.2009.11 PubMedCrossRefGoogle Scholar
  45. Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 62:626–633. doi: 10.2307/2283989 Google Scholar
  46. Smith EN, Chen W, Kähönen M, Kettunen J, Lehtimäki T, Peltonen L, Raitakari OT, Salem RM, Schork NJ, Shaw M, Srinivasan SR, Topol EJ, Viikari JS, Berenson GS, Murray SS (2010) Longitudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa heart study. PLoS Genet 6:e1001094. doi: 10.1371/journal.pgen.1001094 PubMedCrossRefGoogle Scholar
  47. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedGoogle Scholar
  48. Wang L, Hauser ER, Shah SH, Pericak-Vance MA, Haynes C, Crosslin D, Harris M, Nelson S, Hale AB, Granger CB, Haines JL, Jones CJH, Crossman D, Seo D, Gregory SG, Kraus WE, Goldschmidt-Clermont PJ, Vance JM (2007) Peakwide mapping on chromosome 3q13 identifies the Kalirin gene as a novel candidate gene for coronary artery disease. Am J Hum Genet 80:650–663. doi: 10.1086/512981 Google Scholar
  49. Wang L, Hauser ER, Shah SH, Seo D, Sivashanmugam P, Exum ST, Gregory SG, Granger CB, Haines JL, Jones CJH, Crossman D, Haynes C, Kraus WE, Freedman NJ, Pericak-Vance MA, Goldschmidt-Clermont PJ, Vance JM (2008) Polymorphisms of the tumor suppressor gene LSAMP are associated with left main coronary artery disease. Ann Hum Genet 72:443–453. doi: 10.1111/j.1469-1809.2008.00433.x PubMedCrossRefGoogle Scholar
  50. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748. doi: 10.1093/Nar/Gki475 PubMedCrossRefGoogle Scholar
  51. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci 109:1193–1198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cavin Ward-Caviness
    • 1
    Email author
  • Carol Haynes
    • 1
  • Colette Blach
    • 1
  • Elaine Dowdy
    • 1
  • Simon G. Gregory
    • 1
  • Svati H. Shah
    • 1
    • 2
  • Benjamin D. Horne
    • 3
  • William E. Kraus
    • 1
    • 2
  • Elizabeth R. Hauser
    • 1
    • 4
  1. 1.Center for Human Genetics, School of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Division of Cardiovascular Medicine, School of MedicineDuke University Medical CenterDurhamUSA
  3. 3.Cardiovascular Department, Intermountain Medical CenterUniversity of UtahSalt Lake CityUSA
  4. 4.Epidemiologic Research and Information CenterDurham Veterans Affairs Medical CenterDurhamUSA

Personalised recommendations