Advertisement

Human Genetics

, Volume 132, Issue 3, pp 285–292 | Cite as

Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia

  • Lan Yu
  • Julia Wynn
  • Yee Him Cheung
  • Yufeng Shen
  • George B. Mychaliska
  • Timothy M. Crombleholme
  • Kenneth S. Azarow
  • Foong Yen Lim
  • Dai H. Chung
  • Douglas Potoka
  • Brad W. Warner
  • Brian Bucher
  • Charles Stolar
  • Gudrun Aspelund
  • Marc S. Arkovitz
  • Wendy K. Chung
Original Investigation

Abstract

Congenital diaphragmatic hernia (CDH) is characterized by incomplete formation of the diaphragm occurring as either an isolated defect or in association with other anomalies. Genetic factors including aneuploidies and copy number variants are important in the pathogenesis of many cases of CDH, but few single genes have been definitively implicated in human CDH. In this study, we used whole exome sequencing (WES) to identify a paternally inherited novel missense GATA4 variant (c.754C>T; p.R252W) in a familial case of CDH with incomplete penetrance. Phenotypic characterization of the family included magnetic resonance imaging of the chest and abdomen demonstrating asymptomatic defects in the diaphragm in the two “unaffected” missense variant carriers. Screening 96 additional CDH patients identified a de novo heterozygous GATA4 variant (c.848G>A; p.R283H) in a non-isolated CDH patient. In summary, GATA4 is implicated in both familial and sporadic CDH, and our data suggests that WES may be a powerful tool to discover rare variants for CDH.

Keywords

Congenital Diaphragmatic Hernia Congenital Diaphragmatic Hernia Whole Exome Sequencing Human Gene Mutation Database Gene Prioritization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We greatly appreciate the families who participated in this study and all the clinical care teams who assisted with study coordination. We are grateful for the technical assistance provided by Patricia Lanzano, Jiancheng Guo, Liyong Deng and Josue Martinez from Columbia University. We thank Dr. Orpheus Kolokythas for assistance with obtaining and reading the abdominal and thoracic MRIs. We also thank Jeannie Kreutzman, and Robert Drongowski from University of Michigan; Trish Burns from Cincinnati Children’s Hospital Medical Center; Sheila Horak from University of Nebraska; Mary Dabrowiak from Monroe Carell Jr Children’s Hospital at Vanderbilt; Laurie Luther from University of Pittsburgh. Study data were collected and managed using Research Electronic Data Capture (REDCap) electronic data capture tools hosted at Columbia University. REDCap is a secure, web-based application designed to support data capture for research studies. This work was supported by NIH Grant HD057036 and was supported in part by Columbia University’s CTSA Grant UL1 RR024156 from NCATS-NCRR/NIH.

Ethical standards

The authors declare that the experiments in this study comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2012_1249_MOESM1_ESM.pdf (224 kb)
Supplementary material 1 (PDF 224 kb)
439_2012_1249_MOESM2_ESM.pdf (282 kb)
Supplementary material 2 (PDF 282 kb)
439_2012_1249_MOESM3_ESM.pdf (133 kb)
Supplementary material 2 (PDF 134 kb)

References

  1. Ackerman KG, Herron BJ, Vargas SO, Huang HL, Tevosian SG, Kochilas L, Rao C, Pober BR, Babiuk RP, Epstein JA, Greer JJ, Beier DR (2005) Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet 1:58–65PubMedCrossRefGoogle Scholar
  2. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249PubMedCrossRefGoogle Scholar
  3. Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB (1993) Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13:2235–2246PubMedGoogle Scholar
  4. Bouchard MF, Taniguchi H, Viger RS (2009) The effect of human GATA4 gene mutations on the activity of target gonadal promoters. J Mol Endocrinol 42:149–160PubMedCrossRefGoogle Scholar
  5. Brady PD, Srisupundit K, Devriendt K, Fryns JP, Deprest JA, Vermeesch JR (2011) Recent developments in the genetic factors underlying congenital diaphragmatic hernia. Fetal Diagn Ther 29:25–39PubMedGoogle Scholar
  6. Castiglia L, Fichera M, Romano C, Galesi O, Grillo L, Sturnio M, Failla P (2005) Narrowing the candidate region for congenital diaphragmatic hernia in chromosome 15q26: contradictory results. Am J Hum Genet 77:892–894PubMedCrossRefGoogle Scholar
  7. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37 (Web Server issue):W305–W311CrossRefGoogle Scholar
  8. Cooper DN, Ball EV, Krawczak M (1998) The human gene mutation database. Nucleic Acids Res 26:285–287PubMedCrossRefGoogle Scholar
  9. Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844PubMedCrossRefGoogle Scholar
  10. Doi T, Sugimoto K, Puri P (2009) Prenatal retinoic acid up-regulates pulmonary gene expression of COUP-TFII, FOG2, and GATA4 in pulmonary hypoplasia. J Pediatr Surg 44:1933–1937PubMedCrossRefGoogle Scholar
  11. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21:3176–3178PubMedCrossRefGoogle Scholar
  12. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447PubMedCrossRefGoogle Scholar
  13. Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA (2007) Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 80:825–845PubMedCrossRefGoogle Scholar
  14. Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, Wilson DB (2007) Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 301:602–614PubMedCrossRefGoogle Scholar
  15. Klaassens M, van Dooren M, Eussen HJ, Douben H, den Dekker AT, Lee C, Donahoe PK, Galjaard RJ, Goemaere N, de Krijger RR, Wouters C, Wauters J, Oostra BA, Tibboel D, de Klein A (2005) Congenital diaphragmatic hernia and chromosome 15q26: determination of a candidate region by use of fluorescent in situ hybridization and array-based comparative genomic hybridization. Am J Hum Genet 76:877–882PubMedCrossRefGoogle Scholar
  16. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081PubMedCrossRefGoogle Scholar
  17. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedCrossRefGoogle Scholar
  18. Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F (2006) A novel mutation in the GATA4 gene in patients with tetralogy of fallot. Hum Mutat 27:293–294PubMedCrossRefGoogle Scholar
  19. Pober BR, Russell MK, Ackerman KG (1993) Congenital diaphragmatic hernia overview. GeneReviews™ [Internet]. University of Washington, SeattleGoogle Scholar
  20. Reamon-Buettner SM, Borlak J (2005) GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart. J Med Genet 42:e32PubMedCrossRefGoogle Scholar
  21. Reva B, Antipin Y, Sander C (2007) Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 8:R232PubMedCrossRefGoogle Scholar
  22. Scott DA (2007) Genetics of congenital diaphragmatic hernia. Semin Pediatr Surg 16:88–93PubMedCrossRefGoogle Scholar
  23. Shimokawa O, Miyake N, Yoshimura T, Sosonkina N, Harada N, Mizuguchi T, Kondoh S, Kishino T, Ohta T, Remco V, Takashima T, Kinoshita A, Yoshiura K, Niikawa N, Matsumoto N (2005) Molecular characterization of del(8)(p23.1p23.1) in a case of congenital diaphragmatic hernia. Am J Med Genet A 136A:49–51CrossRefGoogle Scholar
  24. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36 (Web Server issue):W377–384CrossRefGoogle Scholar
  25. Wang K, Li MY, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H, Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674PubMedCrossRefGoogle Scholar
  26. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164PubMedCrossRefGoogle Scholar
  27. Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, Scaglia F, Zori RT, Cheung SW, Scott DA, Kang SHL (2009) Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 149A:1661–1677PubMedCrossRefGoogle Scholar
  28. You LR, Takamoto N, Yu CT, Tanaka T, Kodama T, DeMayo FJ, Tsai SY, Tsai MJ (2005) Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. P Natl Acad Sci USA 102:16351–16356CrossRefGoogle Scholar
  29. Yu L, Wynn J, Ma L, Guha S, Mychaliska GB, Crombleholme TM, Azarow KS, Lim FY, Chung DH, Potoka D, Warner BW, Buncher B, LeDuc CA, Costa K, Stolar C, Aspelund G, Arkovitz M, Chung WK (2012) De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet 49:650–659PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lan Yu
    • 1
  • Julia Wynn
    • 1
  • Yee Him Cheung
    • 1
  • Yufeng Shen
    • 2
  • George B. Mychaliska
    • 3
  • Timothy M. Crombleholme
    • 4
  • Kenneth S. Azarow
    • 5
  • Foong Yen Lim
    • 6
  • Dai H. Chung
    • 7
  • Douglas Potoka
    • 8
  • Brad W. Warner
    • 9
  • Brian Bucher
    • 9
  • Charles Stolar
    • 10
  • Gudrun Aspelund
    • 10
  • Marc S. Arkovitz
    • 11
  • Wendy K. Chung
    • 1
  1. 1.Division of Molecular Genetics, Department of PediatricsColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Biomedical InformaticsColumbia University Medical CenterNew YorkUSA
  3. 3.Department of SurgeryUniversity of Michigan Health SystemAnn ArborUSA
  4. 4.Colorado Fetal Care Center, Division of Pediatric General, Thoracic, and Fetal SurgeryChildren’s Hospital Colorado and The University of Colorado School of MedicineAuroraUSA
  5. 5.Department of Pediatric SurgeryUniversity of Nebraska College of MedicineOmahaUSA
  6. 6.Division of Pediatric General, Thoracic, and Fetal Surgery, Center for Molecular Fetal TherapyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  7. 7.Department of Pediatric SurgeryVanderbilt University Medical Center, Vanderbilt Children’s HospitalNashvilleUSA
  8. 8.Department of Pediatric SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  9. 9.Division of Pediatric SurgeryWashington University School of MedicineMOUSA
  10. 10.Division of Pediatric Surgery, Department of SurgeryColumbia University Medical CenterNew YorkUSA
  11. 11.Division of Pediatric SurgeryTel Hashomer Medical CenterTel HashomerIsrael

Personalised recommendations