Advertisement

Human Genetics

, Volume 131, Issue 12, pp 1895–1910 | Cite as

Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage–fusion–bridge for telomere stabilization

  • Svetlana A. YatsenkoEmail author
  • Patricia Hixson
  • Erin K. Roney
  • Daryl A. Scott
  • Christian P. Schaaf
  • Yu-tze Ng
  • Robbin Palmer
  • Richard B. Fisher
  • Ankita Patel
  • Sau Wai Cheung
  • James R. LupskiEmail author
Original Investigation

Abstract

Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion–duplication or duplication–triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in Caenorhabditis elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication.

Keywords

Autism Spectrum Disorder Bacterial Artificial Chromosome Fish Analysis Copy Number Gain Subtelomeric Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are thankful to the families for their cooperation. This study was supported in part by grants the IDDRC (Intellectual and Developmental Disabilities Research Center (P30 HD024064) and the National Institute of Neurological Disorders and Stroke (R01 NS058529) to JRL.

Conflict of interest

J.R.L is a consultant for Athena Diagnostics, owns stock in 23andMe and Ion Torrent Systems Inc., and is a co-inventor on multiple US and European patents for DNA diagnostics. Furthermore, the Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular diagnostic testing (MGL, http://www.bcm.edu/geneticlabs/).

Supplementary material

439_2012_1216_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 43 kb)

References

  1. Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40:1091–1105PubMedCrossRefGoogle Scholar
  2. Andreeva SV, Drozdova VD, Ponochevnaia EV, Kavardakova NV (2008) Rearrangements of chromosome 9 in different hematological neoplasia. Tsitol Genet 42:72–79PubMedGoogle Scholar
  3. Bacolla A, Wells RD (2004) Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 279:47411–47414PubMedCrossRefGoogle Scholar
  4. Ballif BC, Yu W, Shaw CA, Kashork CD, Shaffer LG (2003) Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage–fusion bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12:2153–2165PubMedCrossRefGoogle Scholar
  5. Ballif BC, Wakui K, Gajecka M, Shaffer LG (2004) Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements. Hum Genet 114:198–206PubMedCrossRefGoogle Scholar
  6. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170PubMedCrossRefGoogle Scholar
  7. Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, Pramparo T, Zuffardi O (2006) Identification of a recurrent breakpoint within the SHANK3 gene in the 22q133 deletion syndrome. J Med Genet 43:822–828PubMedCrossRefGoogle Scholar
  8. Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, Grillo L, Galesi O, Vetro A, Ciccone R, Bonati MT, Giglio S, Guerrini R, Osimani S, Marelli S, Zucca C, Grasso R, Borgatti R, Mani E, Motta C, Molteni M, Romano C, Greco D, Reitano S, Baroncini A, Lapi E, Cecconi A, Arrigo G, Patricelli MG, Pantaleoni C, D’Arrigo S, Riva D, Sciacca F, Dalla Bernardina B, Zoccante L, Darra F, Termine C, Maserati E, Bigoni S, Priolo E, Bottani A, Gimelli S, Bena F, Brusco A, di Gregorio E, Bagnasco I, Giussani U, Nitsch L, Politi P, Martinez-Frias ML, Martínez-Fernández ML, Martínez Guardia N, Bremer A, Anderlid BM, Zuffardi O (2011) Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet 7:e1002173PubMedCrossRefGoogle Scholar
  9. Boone PM, Liu P, Zhang F, Carvalho CM, Towne CF, Batish SD, Lupski JR (2011) Alu-specific microhomology-mediated deletion of the final exon of SPAST in three unrelated subjects with hereditary spastic paraplegia. Genet Med 13:582–592PubMedCrossRefGoogle Scholar
  10. Carvalho CM, Zhang F, Liu P, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR (2009) Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet 18:2188–2203PubMedCrossRefGoogle Scholar
  11. Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, Fang P, McCall A, Pivnick EK, Hines-Dowell S, Seaver LH, Friehling L, Lee S, Smith R, Del Gaudio D, Withers M, Liu P, Cheung SW, Belmont JW, Zoghbi HY, Hastings PJ, Lupski JR (2011) Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 43:1074–1081PubMedCrossRefGoogle Scholar
  12. Cheung HC, Yatsenko SA, Kadapakkam M, Legay H, Su J, Lupski JR, Plon SE (2011) Constitutional tandem duplication of 9q34 that truncates EHMT1 in a child with ganglioglioma. Pediatr Blood Cancer. doi: 101002/pbc23219 Google Scholar
  13. Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, Mills RE, Kirby A, Lindgren AM, Rudiger SR, McLaughlan CJ, Bawden CS, Reid SJ, Faull RL, Snell RG, Hall IM, Shen Y, Ohsumi TK, Borowsky ML, Daly MJ, Lee C, Morton CC, MacDonald ME, Gusella JF, Talkowski ME (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397PubMedCrossRefGoogle Scholar
  14. D’Angelo CS, Gajecka M, Kim CA, Gentles AJ, Glotzbach CD, Shaffer LG, Koiffmann CP (2009) Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements. Hum Genet 125:551–563PubMedCrossRefGoogle Scholar
  15. Dave BJ, Wiggins M, Higgins CM, Pickering DL, Perry D, Aoun P, Abromowich M, DeVetten M, Sanger WG (2005) 9q34 rearrangements in BCR/ABL fusion-negative acute lymphoblastic leukemia. Cancer Genet Cytogenet 162:30–37PubMedCrossRefGoogle Scholar
  16. Devriendt K, Matthijs G, Holvoet M, Schoenmakers E, Fryns JP (1999) Triplication of distal chromosome 10q. J Med Genet 36:242–245PubMedGoogle Scholar
  17. Drosopoulos WC, Kosiyatrakul ST, Yan Z, Calderano SG, Schildkraut CL (2012) Human telomeres replicate using chromosome-specific, rather than universal, replication programs. J Cell Biol 197:253–266PubMedCrossRefGoogle Scholar
  18. Ewing AD, Kazazian HH (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20:1262–1270PubMedCrossRefGoogle Scholar
  19. Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galanello R, Cao A, Wood WG, Ayyub H, Higgs DR (1994) Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55:505–512PubMedGoogle Scholar
  20. Flint J, Rochette J, Craddock CF, Dode C, Vignes B, Horsley SW, Kearney L, Buckle VJ, Ayyub H, Higgs DR (1996) Chromosomal stabilization by a subtelomeric rearrangement involving two closely related Alu elements. Hum Mol Genet 5:1163–1169PubMedCrossRefGoogle Scholar
  21. Gijsbers AC, Bijlsma EK, Weiss MM, Bakker E, Breuning MH, Hoffer MJ, Ruivenkamp CA (2008) A 400 kb duplication, 24 Mb triplication and 130 kb duplication of 9q343 in a patient with severe mental retardation. Eur J Med Genet 51:479–487PubMedCrossRefGoogle Scholar
  22. Harrison KJ, Teshima IE, Silver MM, Jay V, Unger S, Robinson WP, James A, Levin A, Chitayat D (1998) Partial tetrasomy with triplication of chromosome (5)(p14–15.33) in a patient with severe multiple congenital anomalies. Am J Med Genet 79:103–107PubMedCrossRefGoogle Scholar
  23. Hastings PJ, Ira G, Lupski JR (2009a) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327PubMedCrossRefGoogle Scholar
  24. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009b) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564PubMedCrossRefGoogle Scholar
  25. Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182PubMedCrossRefGoogle Scholar
  26. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261PubMedCrossRefGoogle Scholar
  27. Kleefstra T, Koolen DA, Nillesen WM, de Leeuw N, Hamel BC, Veltman JA, Sistermans EA, van Bokhoven H, van Ravenswaay C, de Vries BB (2006) Interstitial 2.2 Mb deletion at 9q34 in a patient with mental retardation but without classical features of the 9q subtelomeric deletion syndrome. Am J Med Genet A 140:618–623PubMedGoogle Scholar
  28. Lamb J, Harris PC, Wilkie AO, Wood WG, Dauwerse JG, Higgs DR (1993) De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha thalassemia/mental retardation syndrome (ATP-16). Am J Hum Genet 52:668–676PubMedGoogle Scholar
  29. Ledbetter DH, Martin CL (2007) Cryptic telomere imbalance: a 15-year update. Am J Med Genet C Semin Med Genet 145C:327–334PubMedCrossRefGoogle Scholar
  30. Lee JA, Carvalho CM, Lupski JR (2007) DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247PubMedCrossRefGoogle Scholar
  31. Liu P, Erez A, Nagamani SC, Dhar SU, Kołodziejska KE, Dharmadhikari AV, Cooper ML, Wiszniewska J, Zhang F, Withers MA, Bacino CA, Campos-Acevedo LD, Delgado MR, Freedenberg D, Garnica A, Grebe TA, Hernández-Almaguer D, Immken L, Lalani SR, McLean SD, Northrup H, Scaglia F, Strathearn L, Trapane P, Kang SH, Patel A, Cheung SW, Hastings PJ, Stankiewicz P, Lupski JR, Bi W (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903PubMedCrossRefGoogle Scholar
  32. Lowden MR, Flibotte S, Moerman DG, Ahmed S (2011) DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science 332:468–471PubMedCrossRefGoogle Scholar
  33. Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422PubMedCrossRefGoogle Scholar
  34. Lupski JR (2009) Genomic disorders ten years on. Genome Med 1:42PubMedCrossRefGoogle Scholar
  35. Lupski JR (2010) Retrotransposition and structural variation in the human genome. Cell 141:1110–1112PubMedCrossRefGoogle Scholar
  36. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282PubMedGoogle Scholar
  37. Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35PubMedCrossRefGoogle Scholar
  38. Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM (2009) Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 28:810–820PubMedCrossRefGoogle Scholar
  39. Rauch A, Pfeiffer RA, Trautmann U (1996) Deletion or triplication of the a3(VI) collagen gene in three patients with 2q37 chromosome aberrations and symptoms of collagen-related disorders. Clin Genet 49:279–285PubMedCrossRefGoogle Scholar
  40. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  41. Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Pradervand S, Schütz F, Young JI, Lupski JR, Reymond A, Walz K (2010) Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol 8:e1000543PubMedCrossRefGoogle Scholar
  42. Rivera H, Bobadilla L, Rolon A, Kunz J, Crolla JA (1998) Intrachromosomal triplication of distal 7p. J Med Genet 35:78–80PubMedCrossRefGoogle Scholar
  43. Shao L, Shaw CA, Lu XY, Sahoo T, Bacino CA, Lalani SR, Stankiewicz P, Yatsenko SA, Li Y, Neill S, Pursley AN, Chinault AC, Patel A, Beaudet AL, Lupski JR, Cheung SW (2008) Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet 146A:2242–2251PubMedCrossRefGoogle Scholar
  44. Shimojima K, Mano T, Kashiwagi M, Tanabe T, Sugawara M, Okamoto N, Arai H, Yamamoto T (2012) Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur J Med Genet 55:400–403PubMedCrossRefGoogle Scholar
  45. Simovich MJ, Yatsenko SA, Kang S-HL, Cheung SW, Dudek ME, Pursley A, Ward PA, Patel A, Lupski JR (2007) Prenatal diagnosis of a 9q343 microdeletion by array-CGH in a fetus with an apparently balanced translocation. Prenat Diagn 27:1112–1117PubMedCrossRefGoogle Scholar
  46. Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82PubMedCrossRefGoogle Scholar
  47. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149:525–537PubMedCrossRefGoogle Scholar
  48. Varga T, Aplan PD (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst) 4:1038–1046CrossRefGoogle Scholar
  49. Varley H, Di S, Scherer SW, Royle NJ (2000) Characterization of terminal deletions at 7q32 and 22q133 healed by de novo telomere addition. Am J Hum Genet 67:610–622PubMedCrossRefGoogle Scholar
  50. Verdun RE, Karlseder J (2007) Replication and protection of telomeres. Nature 447:924–931PubMedCrossRefGoogle Scholar
  51. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201PubMedGoogle Scholar
  52. Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR (1990) A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by the addition of telomeric repeats (TTAGGG)n. Nature 346:868–871PubMedCrossRefGoogle Scholar
  53. Yatsenko SA, Cheung SW, Scott DA, Nowaczyk MJ, Tarnopolsky M, Naidu S, Bibat G, Patel A, Leroy JG, Scaglia F, Stankiewicz P, Lupski JR (2005) Deletion 9q343 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J Med Genet 42:328–335PubMedCrossRefGoogle Scholar
  54. Yatsenko SA, Brundage EK, Roney EK, Cheung SW, Chinault AC, Lupski JR (2009a) Molecular mechanisms for subtelomeric rearrangements associated with the 9q343 microdeletion syndrome. Hum Mol Genet 18:1924–1936PubMedCrossRefGoogle Scholar
  55. Yatsenko SA, Shaw CA, Ou Z, Pursley AN, Patel A, Bi W, Cheung SW, Lupski JR, Chinault AC, Beaudet AL (2009b) Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn 11:226–237PubMedCrossRefGoogle Scholar
  56. Zhang F, Carvalho CM, Lupski JR (2009a) Complex human chromosomal and genomic rearrangements. Trends Genet 25:298–307PubMedCrossRefGoogle Scholar
  57. Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR (2009b) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41:849–853PubMedCrossRefGoogle Scholar
  58. Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, Batish SD, De Vriendt E, De Jonghe P, Rautenstrauss B, Krause KH, Khajavi M, Posadka J, Vandenberghe A, Palau F, Van Maldergem L, Baas F, Timmerman V, Lupski JR (2010) Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 86:892–903PubMedCrossRefGoogle Scholar
  59. Zuffardi O, Bonaglia M, Ciccone R, Giorda R (2009) Inverted duplications deletions: underdiagnosed rearrangements? Clin Genet 75:505–513PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Svetlana A. Yatsenko
    • 1
    • 2
    • 3
    Email author
  • Patricia Hixson
    • 1
  • Erin K. Roney
    • 1
  • Daryl A. Scott
    • 1
  • Christian P. Schaaf
    • 1
  • Yu-tze Ng
    • 4
  • Robbin Palmer
    • 5
  • Richard B. Fisher
    • 6
  • Ankita Patel
    • 1
  • Sau Wai Cheung
    • 1
  • James R. Lupski
    • 1
    • 7
    • 8
    Email author
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of PittsburghPittsburghUSA
  3. 3.Department of Pathology, School of MedicineUniversity of PittsburghPittsburghUSA
  4. 4.Barrow Neurological InstitutePhoenixUSA
  5. 5.Northern Nevada Genetic CounselingRenoUSA
  6. 6.Teesside Genetics UnitThe James Cook University HospitalMiddlesbroughUK
  7. 7.Department of PediatricsBaylor College of MedicineHoustonUSA
  8. 8.Texas Children’s HospitalHoustonUSA

Personalised recommendations