Human Genetics

, Volume 131, Issue 12, pp 1811–1820 | Cite as

Network medicine: linking disorders

Review Paper

Abstract

The molecular events underlying many human hereditary disorders remain to be discovered despite the significant advances made in molecular biology and genetics in the past years. Given the complexity of cellular systems and the interplay between different functional modules, it is becoming increasingly evident that profound insights into human disease cannot be derived by analyzing single genetic defects. The generation of different types of disease interaction networks has recently emerged as a unifying approach that holds the promise of shedding some light on common pathological mechanisms by placing the single disorders into a larger context. In this review, I summarize the rationale behind these disease networks and different ways of constructing them. Finally, I highlight some of the first results that have been obtained by systematically analyzing the intertwined relationships between human disorders because they suggest that the current disease classification does not always sufficiently reflect biologically and medically relevant disease relationships.

References

  1. Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F (2008) Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol 4:e1000043PubMedCrossRefGoogle Scholar
  2. Aravind L (2000) Guilt by association: contextual information in genome analysis. Genome Res 10:1074–1077PubMedCrossRefGoogle Scholar
  3. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683PubMedCrossRefGoogle Scholar
  4. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 2:2CrossRefGoogle Scholar
  5. Barabási AL (2007) Network medicine - from obesity to the “diseasome”. N Eng J Med 357:404–407PubMedCrossRefGoogle Scholar
  6. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–115PubMedCrossRefGoogle Scholar
  7. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCrossRefGoogle Scholar
  8. Barkai N, Shilo BZ (2007) Variability and robustness in biomolecular systems. Mol Cell 28:755–760PubMedCrossRefGoogle Scholar
  9. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2:0085–0093CrossRefGoogle Scholar
  10. Blanchini F, Franco E (2011) Structurally robust biological networks. BMC Syst Biol 5:74PubMedCrossRefGoogle Scholar
  11. Bodenreider O (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl Acids Res 32:D267–D270PubMedCrossRefGoogle Scholar
  12. Brunner HG, van Driel MA (2004) From syndrome families to functional genomics. Nat Rev Genet 5:545–551PubMedCrossRefGoogle Scholar
  13. Butte AJ, Kohane IS (2006) Creation and implications of a phenome–genome network. Nat Biotechnol 24:55–62PubMedCrossRefGoogle Scholar
  14. Clermont G, Auffray C, Moreau Y, Rocke DM, Dalevi D, Dubhashi D, Marshall DR, Raasch P, Dehne F, Provero P, Tegner J, Aronow BJ, Langston MA, Benson M (2009) Bridging the gap between systems biology and medicine. Genome Med 1:88PubMedCrossRefGoogle Scholar
  15. Davis DA, Chawla NV (2011) Exploring and exploiting disease interactions from multi-relational gene and phenotype networks. PLoS One 67:e22670CrossRefGoogle Scholar
  16. Dryja TP, Cavenee W, White R, Rapaport JM, Petersen R, Albert DM, Bruns GA (1984) Homozygosity of chromosome 13 in retinoblastoma. N Engl J Med 310(9):550–553PubMedCrossRefGoogle Scholar
  17. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug–disease relationships for computational drug repositioning. Brief Bioinform 12(4):303–311PubMedCrossRefGoogle Scholar
  18. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826PubMedCrossRefGoogle Scholar
  19. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293PubMedCrossRefGoogle Scholar
  20. Gillis J, Pavlidis P (2011) The impact of multifunctional genes on “guilt by association” analysis. PLoS One 6:e17258PubMedCrossRefGoogle Scholar
  21. Gillis J, Pavlidis P (2012) “Guilt by association” is the exception rather than the rule in gene networks. PLoS Comput Biol 8:e1002444PubMedCrossRefGoogle Scholar
  22. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690PubMedCrossRefGoogle Scholar
  23. Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 30:52–55PubMedCrossRefGoogle Scholar
  24. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New YorkGoogle Scholar
  25. Hidalgo CA, Blumm N, Barabási AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5:e1000353PubMedCrossRefGoogle Scholar
  26. Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4:e23PubMedCrossRefGoogle Scholar
  27. Hoehndorf R, Schofield PN, Gkoutos GV (2011) PhenomeNET: a whole-phenome approach to disease gene discovery. Nucl Acids Res 39(18):e119PubMedCrossRefGoogle Scholar
  28. Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R (2011) Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 6:e21132PubMedCrossRefGoogle Scholar
  29. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866PubMedCrossRefGoogle Scholar
  30. Jiang X, Liu B, Jiang J, Zhao H, Fan M, Zhang J, Fan Z, Jiang T (2008) Modularity in the genetic disease–phenotype network. FEBS Lett 582:2549–2554PubMedCrossRefGoogle Scholar
  31. Jordan IK, Mariño-Ramirez L, Koonin EV (2005) Evolutionary significance of gene expression divergence. Gene 345:119–126PubMedCrossRefGoogle Scholar
  32. Kann MG (2010) Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief Bioinform 11:96–110PubMedCrossRefGoogle Scholar
  33. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778PubMedCrossRefGoogle Scholar
  34. Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome–interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316PubMedCrossRefGoogle Scholar
  35. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL (2008) The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA 105:9880–9885PubMedCrossRefGoogle Scholar
  36. Linghu B, DeLisi C (2010) Phenotypic connections in surprising places. Genome Biol 11:116PubMedCrossRefGoogle Scholar
  37. Linghu B, Snitkin ES, Hu Z, Xia Y, DeLisi C (2009) Genome-wide prioritization of disease genes and identification of disease–disease associations from an integrated human functional linkage network. Genome Biol 10:R91PubMedCrossRefGoogle Scholar
  38. Liu YI, Wise PH, Butte AJ (2009) The “etiome”: identification and clustering of human disease etiological factors. BMC Bioinformatics 10(Suppl 2):S14PubMedCrossRefGoogle Scholar
  39. Lu X, Horvitz HR (1998) lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95(7):981–991PubMedCrossRefGoogle Scholar
  40. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420PubMedCrossRefGoogle Scholar
  41. Mahner M, Kary M (1997) What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol 186:55–63PubMedCrossRefGoogle Scholar
  42. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86PubMedCrossRefGoogle Scholar
  43. McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci USA 107(14):6544–6549PubMedCrossRefGoogle Scholar
  44. Miozzi L, Piro RM, Rosa F, Ala U, Silengo L, Di Cunto F, Provero P (2008) Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data. PLoS One 3:e2439PubMedCrossRefGoogle Scholar
  45. Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng G, Chisholm RL (2009) Annotating the human genome with Disease Ontology. BMC Genomics 10:S6PubMedCrossRefGoogle Scholar
  46. Oti M, Brunner HG (2007) The modular nature of genetic disease. Clin Genet 71:1–11PubMedCrossRefGoogle Scholar
  47. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43:691–698PubMedCrossRefGoogle Scholar
  48. Oti M, Huynen MA, Brunner HG (2008) Phenome connections. Trends Genet 24:103–106PubMedCrossRefGoogle Scholar
  49. Pastor-Satorras R, Smith E, Sole RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210PubMedCrossRefGoogle Scholar
  50. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270PubMedCrossRefGoogle Scholar
  51. Pinksy L (1977) The polythetic (phenotype community) system of classifying human malformation syndromes. Birth Defects Orig Artic Ser 13:13–30Google Scholar
  52. Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 279(5):678–696PubMedCrossRefGoogle Scholar
  53. Piro RM, Ala U, Molineris I, Grassi E, Bracco C, Perego GP, Provero P, Di Cunto F (2011) An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 19:1173–1180PubMedCrossRefGoogle Scholar
  54. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29PubMedCrossRefGoogle Scholar
  55. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83:610–615PubMedCrossRefGoogle Scholar
  56. Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci USA 104:11694–11699PubMedCrossRefGoogle Scholar
  57. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2010) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 38:D5–D16PubMedCrossRefGoogle Scholar
  58. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223PubMedCrossRefGoogle Scholar
  59. Schadt EE, Björkegren JLM (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Science Transl Med 4:115rv1.Google Scholar
  60. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nature Rev Drug Discov 8:286–295CrossRefGoogle Scholar
  61. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6:e1000662PubMedCrossRefGoogle Scholar
  62. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14:535–542PubMedCrossRefGoogle Scholar
  63. Van Regenmortel MHV (2004) Reductionism and complexity in molecular biology. EMBO Rep 5:1016–1020PubMedCrossRefGoogle Scholar
  64. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998PubMedCrossRefGoogle Scholar
  65. Wu X, Liu Q, Jiang R (2009) Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics 25:98–104PubMedCrossRefGoogle Scholar
  66. Zaghloul NA, Katsanis N (2010) Functional modules, mutational load and human genetic disease. Trends Genet 26:168–176PubMedCrossRefGoogle Scholar
  67. Zhang SH, Wu C, Li X, Chen X, Jiang W, Gong BS, Li J, Yan YQ (2010) From phenotype to gene: detecting disease-specific gene functional modules via a text-based human disease phenotype network construction. FEBS Lett 584:3635–3643PubMedCrossRefGoogle Scholar
  68. Zhang M, Zhu C, Jacomy A, Lu LJ, Jegga AG (2011a) The orphan disease networks. Am J Hum Genet 88:755–766PubMedCrossRefGoogle Scholar
  69. Zhang X, Zhang R, Jiang Y, Sun P, Tang G, Wang X, Lv H, Li X (2011b) The expanded human disease network combining protein–protein interaction information. Eur J Hum Genet 19:783–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Theoretical BioinformaticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, BioQuantUniversity of HeidelbergHeidelbergGermany

Personalised recommendations