Advertisement

Human Genetics

, Volume 131, Issue 11, pp 1783–1793 | Cite as

Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness

  • René HoehnEmail author
  • Tanja Zeller
  • Virginie J. M. Verhoeven
  • Franz Grus
  • Max Adler
  • Roger C. Wolfs
  • André G. Uitterlinden
  • Raphaële Castagne
  • Arne Schillert
  • Caroline C. W. Klaver
  • Norbert Pfeiffer
  • Alireza Mirshahi
Original Investigation

Abstract

Central corneal thickness (CCT) has become an endophenotype of major interest for the genetically complex disorder glaucoma. CCT has a high heritability, and thin CCT is an independent risk factor for the diagnosis and progression of open-angle glaucoma. Genome-wide association studies thus provide genetic loci associated with CCT and potentially related to open-angle glaucoma. The distribution of CCT and prevalence of glaucoma in population-based studies have demonstrated ethnic differences suggesting ethnic-dependent variations in the genetic determinants of CCT. We conducted a genome-wide association study in Caucasians (n = 3,931) from the Gutenberg Health Study (Germany) followed by replication of 30 genome-wide significant SNPs or SNPs of interest (P < 10−5) in the Rotterdam Study (The Netherlands, n = 1,418). In a combined analysis, we confirmed quantitative trait loci on chromosomes 9q34 and 16q24 for association with CCT. On chromosome 16q24, the locus is located in an intergenic region near the ZNF469 gene (top SNP: rs9938149, P = 1.45 × 10−12). ZNF469 missense mutation is involved in a syndrome with very thin cornea (brittle cornea syndrome). The second locus on chromosome 9q34 represents the intergenic region between the RXRA and COL5A1 gene (top SNP: rs3132306, P = 2.71 × 10−10). Collagen type 5 determines the diameter of the corneal collagen fibrils. In our Caucasian population-based GWA study, we reinforce the involvement of collagen-related genes influencing CCT in Caucasians. We could not confirm the collagen type 8 locus on chromosome 1 as reported in Asian studies.

Keywords

Glaucoma Central Corneal Thickness Keratoconus Discovery Cohort ZNF469 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge the following agencies and persons: The Gutenberg Health Study is funded through the government of Rheinland-Pfalz (“Stiftung Rheinland Pfalz für Innovation” [AZ961386261733]; the research programs “Wissen schafft Zukunft” and “Schwerpunkt Vaskuläre Prävention” of the Johannes Gutenberg-University of Mainz; Boehringer Ingelheim; PHILIPS Medical Systems; National Genome Network “NGFNplus” by the Federal Ministry of Education and Research, Germany [A301GS0833]. The Gutenberg Health Study thanks Dagmar Laubert-Reh for her assistance with the statistics and all technical assistants for sample processing and genotyping. The Rotterdam Study was supported by the Netherlands Organisation of Scientific Research (NWO) [Vidi 91796357]; Erasmus Medical Center and Erasmus University, Rotterdam, The Netherlands; Netherlands Organization for Health Research and Development (ZonMw); UitZicht; the Research Institute for Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission (DG XII); the Municipality of Rotterdam; the Netherlands Genomics Initiative/NWO; Center for Medical Systems Biology of NGI; Lijf en Leven; M.D. Fonds; Henkes Stichting; Stichting Nederlands Oogheelkundig Onderzoek; Swart van Essen; Bevordering van Volkskracht; Blindenhulp; Landelijke Stichting voor Blinden en Slechtzienden; Rotterdamse Vereniging voor Blindenbelangen; OOG; Algemene Nederlandse Vereniging ter Voorkoming van Blindheid; the Rotterdam Eye Hospital Research Foundation; Laméris Ootech; Topcon Europe; and Heidelberg Engineering. The Rotterdam Study thanks Johannes R. Vingerling, Fernando Rivadeneira, Albert Hofman, Paulus T.V.M. de Jong, Ada Hooghart, Corina Brussee, Riet Bernaerts-Biskop, Patricia van Hilten, Pascal Arp, Jeanette Vergeer, Marijn Verkerk and Sander Bervoets.

Ethical standards

The experiments comply with the current laws in which they were performed.

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

439_2012_1201_MOESM1_ESM.doc (38 kb)
Table. 3 (doc 39 kb)

References

  1. Abu A, Frydman M, Marek D, Pras E, Nir U, Reznik-Wolf H (2008) Deleterious mutations in the Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet 82:1217–1222PubMedCrossRefGoogle Scholar
  2. Amano S, Honda N, Amano Y, Yamagami S, Miyai T, Samejima T, Ogata M, Miyata K (2006) Comparison of central corneal thickness measurements by rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography. Ophthalmology 113:937–941PubMedCrossRefGoogle Scholar
  3. Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237PubMedCrossRefGoogle Scholar
  4. Birk DE, Fitch JM, Babiarz JP, Linsenmayer TF (1988) Collagen type I and type V are present in the same fibril in the avian corneal stroma. J Cell Biol 106:999–1008PubMedCrossRefGoogle Scholar
  5. Burvenich H, Burvenich E, Vincent C (2005) Dynamic contour tonometry (DCT) versus non-contact tonometry (NCT): a comparison study. Bull Soc Belge Ophtalmol 63–69Google Scholar
  6. Charlesworth J, Kramer PL, Dyer T, Diego V, Samples JR, Craig JE, Mackey DA, Hewitt AW, Blangero J, Wirtz MK (2010) The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest Ophthalmol Vis Sci 51:3509–3514PubMedCrossRefGoogle Scholar
  7. Christensen AE, Knappskog PM, Midtbo M, Gjesdal CG, Mengel-From J, Morling N, Rodahl E, Boman H (2010) Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest Ophthalmol Vis Sci 51:47–52PubMedCrossRefGoogle Scholar
  8. Cornes BK, Khor CC, Nongpiur ME, Xu L, Tay WT, Zheng Y, Lavanya R, Li Y, Wu R, Sim X, Wang YX, Chen P, Teo YY, Chia KS, Seielstad M, Liu J, Hibberd ML, Cheng CY, Saw SM, Tai ES, Jonas JB, Vithana EN, Wong TY, Aung T (2012) Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations. Hum Mol Genet 21:437–445PubMedCrossRefGoogle Scholar
  9. Desronvil T, Logan-Wyatt D, Abdrabou W, Triana M, Jones R, Taheri S, Del Bono E, Pasquale LR, Olivier M, Haines JL, Fan BJ, Wiggs JL (2010) Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol Vis 16:2185–2191PubMedGoogle Scholar
  10. Dimasi DP, Burdon KP, Craig JE (2009a) The genetics of central corneal thickness. Br J OphthalmolGoogle Scholar
  11. Dimasi DP, Chen JY, Hewitt AW, Klebe S, Davey R, Stirling J, Thompson E, Forbes R, Tan TY, Savarirayan R, Mackey DA, Healey PR, Mitchell P, Burdon KP, Craig JE (2009b) Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum GenetGoogle Scholar
  12. Estrada K, Abuseiris A, Grosveld FG, Uitterlinden AG, Knoch TA, Rivadeneira F (2009) GRIMP: a web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. Bioinformatics 25:2750–2752PubMedCrossRefGoogle Scholar
  13. Fichard A, Kleman JP, Ruggiero F (1995) Another look at collagen V and XI molecules. Matrix Biol 14:515–531PubMedCrossRefGoogle Scholar
  14. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720 (discussion 829–830)Google Scholar
  15. Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HL, Klaver CC, Kuipers EJ, Nijsten TE, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Witteman JC (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26:657–686PubMedCrossRefGoogle Scholar
  16. Huang J, Pesudovs K, Yu A, Wright T, Wen D, Li M, Yu Y, Wang Q (2011) A comprehensive comparison of central corneal thickness measurement. Optom Vis Sci 88:940–949PubMedCrossRefGoogle Scholar
  17. Ishibazawa A, Igarashi S, Hanada K, Nagaoka T, Ishiko S, Ito H, Yoshida A (2011) Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Cornea 30:615–619PubMedCrossRefGoogle Scholar
  18. Khan AO (2011) Genetics of primary glaucoma. Curr Opin Ophthalmol 22:347–355PubMedCrossRefGoogle Scholar
  19. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972PubMedCrossRefGoogle Scholar
  20. Lu Y, Dimasi DP, Hysi PG, Hewitt AW, Burdon KP, Toh T, Ruddle JB, Li YJ, Mitchell P, Healey PR, Montgomery GW, Hansell N, Spector TD, Martin NG, Young TL, Hammond CJ, Macgregor S, Craig JE, Mackey DA (2010) Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet 6:e1000947PubMedCrossRefGoogle Scholar
  21. Malfait F, Wenstrup RJ, De Paepe A (2010) Clinical and genetic aspects of Ehlers–Danlos syndrome, classic type. Genet Med 12:597–605PubMedCrossRefGoogle Scholar
  22. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913PubMedCrossRefGoogle Scholar
  23. Medeiros FA, Sample PA, Zangwill LM, Bowd C, Aihara M, Weinreb RN (2003) Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am J Ophthalmol 136:805–813PubMedCrossRefGoogle Scholar
  24. Meek KM, Fullwood NJ (2001) Corneal and scleral collagens—a microscopist’s perspective. Micron 32:261–272PubMedCrossRefGoogle Scholar
  25. Miglior S, Pfeiffer N, Torri V, Zeyen T, Cunha-Vaz J, Adamsons I (2007) Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 114:3–9PubMedCrossRefGoogle Scholar
  26. Murase H, Sawada A, Mochizuki K, Yamamoto T (2009) Effects of corneal thickness on intraocular pressure measured with three different tonometers. Jpn J Ophthalmol 53:1–6PubMedCrossRefGoogle Scholar
  27. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337PubMedCrossRefGoogle Scholar
  28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar
  29. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267PubMedCrossRefGoogle Scholar
  30. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851PubMedGoogle Scholar
  31. Rotival M, Zeller T, Wild PS, Maouche S, Szymczak S, Schillert A, Castagne R, Deiseroth A, Proust C, Brocheton J, Godefroy T, Perret C, Germain M, Eleftheriadis M, Sinning CR, Schnabel RB, Lubos E, Lackner KJ, Rossmann H, Munzel T, Rendon A, Erdmann J, Deloukas P, Hengstenberg C, Diemert P, Montalescot G, Ouwehand WH, Samani NJ, Schunkert H, Tregouet DA, Ziegler A, Goodall AH, Cambien F, Tiret L, Blankenberg S (2011) Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet 7:e1002367PubMedCrossRefGoogle Scholar
  32. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA (2010) The heritability of ocular traits. Surv Ophthalmol 55:561–583PubMedCrossRefGoogle Scholar
  33. Segev F, Heon E, Cole WG, Wenstrup RJ, Young F, Slomovic AR, Rootman DS, Whitaker-Menezes D, Chervoneva I, Birk DE (2006) Structural abnormalities of the cornea and lid resulting from collagen V mutations. Invest Ophthalmol Vis Sci 47:565–573PubMedCrossRefGoogle Scholar
  34. Sun M, Chen S, Adams SM, Florer JB, Liu H, Kao WW, Wenstrup RJ, Birk DE (2011) Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci 124:4096–4105PubMedCrossRefGoogle Scholar
  35. Vitart V, Bencic G, Hayward C, Skunca Herman J, Huffman J, Campbell S, Bucan K, Navarro P, Gunjaca G, Marin J, Zgaga L, Kolcic I, Polasek O, Kirin M, Hastie ND, Wilson JF, Rudan I, Campbell H, Vatavuk Z, Fleck B, Wright A (2010) New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet 19:4304–4311PubMedCrossRefGoogle Scholar
  36. Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, Chia KS, Seielstad M, Goh LK, Saw SM, Tai ES, Wong TY (2011) Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 20:649–658PubMedCrossRefGoogle Scholar
  37. Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW, Chervoneva I, Birk DE (2006) Murine model of the Ehlers–Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281:12888–12895PubMedCrossRefGoogle Scholar
  38. Wolfs RC, Klaver CC, Vingerling JR, Grobbee DE, Hofman A, de Jong PT (1997) Distribution of central corneal thickness and its association with intraocular pressure: the Rotterdam Study. Am J Ophthalmol 123:767–772PubMedGoogle Scholar
  39. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, Maouche S, Germain M, Lackner K, Rossmann H, Eleftheriadis M, Sinning CR, Schnabel RB, Lubos E, Mennerich D, Rust W, Perret C, Proust C, Nicaud V, Loscalzo J, Hubner N, Tregouet D, Munzel T, Ziegler A, Tiret L, Blankenberg S, Cambien F (2010) Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One 5:e10693PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • René Hoehn
    • 1
    Email author
  • Tanja Zeller
    • 2
  • Virginie J. M. Verhoeven
    • 3
    • 4
  • Franz Grus
    • 1
  • Max Adler
    • 1
  • Roger C. Wolfs
    • 3
    • 4
  • André G. Uitterlinden
    • 5
  • Raphaële Castagne
    • 6
  • Arne Schillert
    • 7
  • Caroline C. W. Klaver
    • 3
    • 4
  • Norbert Pfeiffer
    • 1
  • Alireza Mirshahi
    • 1
  1. 1.Department of OphthalmologyUniversity Medical Center MainzMainzGermany
  2. 2.Clinic for General and Interventional CardiologyUniversity Heart Center HamburgHamburgGermany
  3. 3.Department of OphthalmologyErasmus Medical CenterRotterdamThe Netherlands
  4. 4.Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  5. 5.Department of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
  6. 6.INSERM UMRS 937Pierre and Marie Curie University and Medical SchoolParisFrance
  7. 7.Institute of Medical Biometry and StatisticsUniversity Hospital Schleswig–HolsteinLuebeckGermany

Personalised recommendations