Human Genetics

, Volume 131, Issue 10, pp 1533–1540 | Cite as

The role of phenotype in gene discovery in the whole genome sequencing era

Review Paper

Abstract

As whole genome sequence becomes a routine component of gene discovery studies in humans, we will have an exhaustive catalog of genetic variation and the challenge becomes understanding the phenotypic consequences of these variants. Statistical genetic methods and analytical approaches that are concerned with optimizing phenotypes for gene discovery for complex traits offer two general categories of advantages. They may increase power to localize genes of interest and also aid in interpreting associations between genetic variants and disease outcomes by suggesting potential mechanisms and pathways through which genes may affect outcomes. Such phenotype optimization approaches include use of allied phenotypes such as symptoms or ages of onset to reduce genetic heterogeneity within a set of cases, study of quantitative risk factors or endophenotypes, joint analyses of related phenotypes, and derivation of new phenotypes designed to extract independent measures underlying the correlations among a set of related phenotypes through approaches such as principal components. New opportunities are also presented by technological advances that permit efficient collection of hundreds or thousands of phenotypes on an individual, including phenotypes more proximal to the level of gene action such as levels of gene expression, microRNAs, or metabolic and proteomic profiles.

Notes

Acknowledgments

This work was supported in part by R01 MH59490 from the National Institute of Mental Health and R01 GM31575 from the National Institute of General Medical Sciences.

References

  1. Almasy L, Dyer TD, Blangero J (1997) Bivariate quantitative trait linkage analysis: pleiotropy versus coincident linkages. Genet Epidemiol 14:953–958PubMedCrossRefGoogle Scholar
  2. Amos CI, de Andrade M, Zhu DK (2001) Comparison of multivariate tests for genetic linkage. Hum Hered 51:133–144PubMedCrossRefGoogle Scholar
  3. Arya R, Blangero J, Williams K, Almasy L, Dyer TD, Leach RJ, O’Connell P, Stern MP, Duggirala R (2002) Factors of insulin resistance syndrome-related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic Mexican-Americans. Diabetes 51:841–847PubMedCrossRefGoogle Scholar
  4. Bailey-Wilson JE, Almasy L, de Andrade M, Bailey J, Bickeböller H, Cordell H, Daw W, Goldin L, Goode E, Gray-Mcguire C, Hening W, Jarvik G, Maher B, Mendell N, Paterson A, Rice J, Satten G, Suarez B, Vieland V, Wilcox M, Zhang H, Ziegler A, MacCluer JW (2005) Genetic Analysis Workshop 14: Microsatellite and SNP marker loci for genome-wide scans. BMC Genet 6:S1PubMedCrossRefGoogle Scholar
  5. Bielinski SJ, Chai HS, Pathak J, Talwalkar JA, Limburg PJ, Gullerud RE, Sicotte H, Klee EW, Ross JL, Kocher JP, Kullo IJ, Heit JA, Petersen GM, de Andrade M, Chute CG (2011) Mayo Genome Consortia: a genotype–phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin Proc 86:606–614PubMedCrossRefGoogle Scholar
  6. Blangero J, Williams JT, Almasy L (2003) Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost 1:1391–1397PubMedCrossRefGoogle Scholar
  7. Chung RH, Schmidt S, Martin ER, Hauser ER (2008) Ordered-subset analysis (OSA) for family-based association mapping of complex traits. Genet Epidemiol 32:627–637PubMedCrossRefGoogle Scholar
  8. Cupples LA, Beyene J, Bickeboeller H, Daw EW, Fallin MD, Gauderman WJ, Ghosh S, Goode EL, Hauser ER, Hinrichs A, Kent JW Jr, Martin LJ, Martinez M, Neuman RJ, Province M, Szymczak S, Wilcox MA, Ziegler A, MacCluer JW, Almasy L (2009) Genetic Analysis Workshop 16: strategies for genome-wide association study analyses. BMC Proc 3(Suppl 7):S1PubMedCrossRefGoogle Scholar
  9. Denny JC, Crawford DC, Ritchie MD, Bielinski SJ, Basford MA, Bradford Y, Chai HS, Bastarache L, Zuvich R, Peissig P, Carrell D, Ramirez AH, Pathak J, Wilke RA, Rasmussen L, Wang X, Pacheco JA, Kho AN, Hayes MG, Weston N, Matsumoto M, Kopp PA, Newton KM, Jarvik GP, Li R, Manolio TA, Kullo IJ, Chute CG, Chisholm RL, Larson EB, McCarty CA, Masys DR, Roden DM, de Andrade M (2011) Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. Am J Hum Genet 89:529–542PubMedCrossRefGoogle Scholar
  10. Dick DM, Nurnberger J Jr, Edenberg HJ, Goate A, Crowe R, Rice J, Bucholz KK, Kramer J, Schuckit MA, Smith TL, Porjesz B, Begleiter H, Hesselbrock V, Foroud T (2002) Suggestive linkage on chromosome 1 for a quantitative alcohol-related phenotype. Alcohol Clin Exp Res 26:1453–1460PubMedCrossRefGoogle Scholar
  11. Falconer DS (1989) Quantitative genetics, 3rd edn. Wiley, New YorkGoogle Scholar
  12. Gelernter J, Panhysen C, Wilcox M, Hesselbrock V, Rounsaville B, Poling J, Weiss R, Sonne S, Zhao H, Farrer L, Kranzler HR (2006) Genome wide linkage scan for opioid dependence and related traits. Am J Hum Genet 78:759–769PubMedCrossRefGoogle Scholar
  13. Ghosh S, Bickeboeller H, Bailey J, Bailey-Wilson J, Cantor R, Culverhouse R, Daw W, DeStefano A, Engelman C, Hemmelman C, Hinrichs A, Houwing-Duistermaat J, Koenig I, Kent J Jr, Pankratz N, Paterson A, Pugh E, Suarez B, Sun Y, Thomas A, Tintle N, Zhu X, MacCluer J, Almasy L (2011) Identifying rare variants from exome scans: The GAW17 experience. BMC Proc 5(Suppl 9):S1PubMedCrossRefGoogle Scholar
  14. Glahn DC, Curran JE, Winkler AM, Carless MA, Kent JW Jr, Charlesworth JC, Johnson MP, Göring HH, Cole SA, Dyer TD, Moses EK, Olvera RL, Kochunov P, Duggirala R, Fox PT, Almasy L, Blangero J (2012) High dimensional endophenotype ranking in the search for major depression risk genes. Biol Psychiatry 71:6–14PubMedCrossRefGoogle Scholar
  15. Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39:1208–1216PubMedCrossRefGoogle Scholar
  16. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645PubMedCrossRefGoogle Scholar
  17. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689PubMedCrossRefGoogle Scholar
  18. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, Chen IM, Atlast SR, Kang H, Ar K, Wilson CS, Wharton W, Murphy M, Devidas M, Carroll AJ, Borowitz MJ, Bowman WP, Downing JR, Relling M, Yang J, Bhojwani D, Carroll WL, Camitta B, Reaman GH, Smith M, Hunger SP, Willman CL (2010) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116:4874–4884PubMedCrossRefGoogle Scholar
  19. Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina S, Durand E, Vatin V, Degraeve F, Proença C, Gaget S, Körner A, Kovacs P, Kiess W, Tichet J, Marre M, Hartikainen AL, Horber F, Potoczna N, Hercberg S, Levy-Marchal C, Pattou F, Heude B, Tauber M, McCarthy MI, Blakemore AI, Montpetit A, Polychronakos C, Weill J, Coin LJ, Asher J, Elliott P, Järvelin MR, Visvikis-Siest S, Balkau B, Sladek R, Balding D, Walley A, Dina C, Froguel P (2009) Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41:157–159PubMedCrossRefGoogle Scholar
  20. Moskvina V, Schimidt KM (2008) On multiple-testing correction in genome-wide association studies. Genet Epidemiol 32:567–573PubMedCrossRefGoogle Scholar
  21. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O’Donnell CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Ardissino D, Merlini PA, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M, Celli P, Ferrario M, Fetiveau R, Marziliano N, Casari G, Galli M, Ribichini F, Rossi M, Bernardi F, Zonzin P, Piazza A, Mannucci PM, Schwartz SM, Siscovick DS, Yee J, Friedlander Y, Elosua R, Marrugat J, Lucas G, Subirana I, Sala J, Ramos R, Kathiresan S, Meigs JB, Williams G, Nathan DM, MacRae CA, O’Donnell CJ, Salomaa V, Havulinna AS, Peltonen L, Melander O, Berglund G, Voight BF, Kathiresan S, Hirschhorn JN, Asselta R, Duga S, Spreafico M, Musunuru K, Daly MJ, Purcell S, Voight BF, Purcell S, Nemesh J, Korn JM, McCarroll SA, Schwartz SM, Yee J, Kathiresan S, Lucas G, Subirana I, Elosua R, Surti A, Guiducci C, Gianniny L, Mirel D, Parkin M, Burtt N, Gabriel SB, Samani NJ, Thompson JR, Braund PS, Wright BJ, Balmforth AJ, Ball SG, Hall AS; Wellcome Trust Case Control Consortium, Schunkert H, Erdmann J, Linsel-Nitschke P, Lieb W, Ziegler A, König I, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Schunkert H, Samani NJ, Erdmann J, Ouwehand W, Hengstenberg C, Deloukas P, Scholz M, Cambien F, Reilly MP, Li M, Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH, Devaney J, Burnett MS, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Knouff CW, Waterworth DM, Walker MC, Mooser V, Epstein SE, Rader DJ, Scheffold T, Berger K, Stoll M, Huge A, Girelli D, Martinelli N, Olivieri O, Corrocher R, Morgan T, Spertus JA, McKeown P, Patterson CC, Schunkert H, Erdmann E, Linsel-Nitschke P, Lieb W, Ziegler A, König IR, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Hólm H, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Engert JC, Do R, Xie C, Anand S, Kathiresan S, Ardissino D, Mannucci PM, Siscovick D, O’Donnell CJ, Samani NJ, Melander O, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Altshuler D (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–41Google Scholar
  22. Ott J, Rabinowitz D (1999) A principal-components approach based on heritability for combining phenotype information. Hum Hered 49:106–111PubMedCrossRefGoogle Scholar
  23. Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, Buyske S, Cai C, Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu CN, Jackson RD, Kooperberg C, Le Marchand L, Lin Y, Matise TC, Moreland L, Monroe K, Reiner AP, Wallace R, Wilkens LR, Crawford DC, Ritchie MD (2011) The use of phenome-wide association studies (PheWAS) for exploration of novel genotype–phenotype relationships and pleiotropy discovery. Genet Epidemiol 35:410–422PubMedCrossRefGoogle Scholar
  24. Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878PubMedCrossRefGoogle Scholar
  25. Qin X, Hauser ER, Schmidt S (2010) Ordered subset analysis for case–control studies. Genet Epidemiol 34:407–417PubMedCrossRefGoogle Scholar
  26. Saint-Pierre A, Kaufman JM, Ostertag A, Cohen-Solal M, Boland A, Toye K, Zelenika D, Lathrop M, de Vernejoul MC, Martinez M (2011) Bivariate association analysis in selected samples: application to a GWAS of two bone mineral density phenotypes in males with high or low BMC. Eu J Hum Genet 19:710–716CrossRefGoogle Scholar
  27. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, DePaulo JR Jr, Gejman PV, Sanders AR, Johnson JK, Adams P, Chaudhury S, Jancic D, Evgrafov O, Zvinyatskovskiy A, Ertman N, Gladis M, Neimanas K, Goodell M, Hale N, Ney N, Verma R, Mirel D, Holmans P, Levinson DF (2011) Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 16:193–201PubMedCrossRefGoogle Scholar
  28. St. George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890PubMedCrossRefGoogle Scholar
  29. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann O, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O’Brien C, Papmeyer M, Pütz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Göring HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW Jr, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Mühleisen TW, Nauck M, Nöthen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Rentería ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdés Hernández MC, Van den Heuvel M, van der Wee NJ, Van Haren NE, Veltman JA, Völzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR Jr, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), EPIGEN Consortium, IMAGEN Consortium, Saguenay Youth Study Group (SYS), Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, Decarli C, Seshadri S, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernández G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Müller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Sämann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44:552–561PubMedCrossRefGoogle Scholar
  30. Wilcox M, Li Q, Sun Y, Stang P, Berlin J, Wang D (2009) Genome-wide association study for empirically derived metabolic phenotypes in the Framingham Heart Study offspring cohort. BMC Proc 3(Suppl 7):S53PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA

Personalised recommendations