Human Genetics

, Volume 131, Issue 6, pp 857–876 | Cite as

Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes

Review Paper

Abstract

Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene–gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.

References

  1. Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX (2000) Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology 39:2726–2739. (pii:S0028390800001568)PubMedGoogle Scholar
  2. Aubin HJ, Bobak A, Britton JR, Oncken C, Billing CB Jr, Gong J, Williams KE, Reeves KR (2008) Varenicline versus transdermal nicotine patch for smoking cessation: results from a randomised open-label trial. Thorax 63:717–724. doi:10.1136/thx.2007.090647 PubMedGoogle Scholar
  3. Audrain-McGovern J, Al Koudsi N, Rodriguez D, Wileyto EP, Shields PG, Tyndale RF (2007) The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics 119:e264–e274. doi:10.1542/peds.2006-1583 PubMedGoogle Scholar
  4. Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124:183–194PubMedGoogle Scholar
  5. Baker TB, Weiss RB, Bolt D, von Niederhausern A, Fiore MC, Dunn DM, Piper ME, Matsunami N, Smith SS, Coon H, McMahon WM, Scholand MB, Singh N, Hoidal JR, Kim SY, Leppert MF, Cannon DS (2009) Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tob Res 11:785–796. doi:10.1093/ntr/ntp064 PubMedGoogle Scholar
  6. Balfour DJ (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens [corrected]. Nicotine Tob Res 6:899–912PubMedGoogle Scholar
  7. Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83:531–541. doi:10.1038/clpt.2008.3 PubMedGoogle Scholar
  8. Benowitz NL, Porchet H, Jacob P 3rd (1989) Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Prog Brain Res 79:279–287PubMedGoogle Scholar
  9. Benowitz NL, Pomerleau OF, Pomerleau CS, Jacob P 3rd (2003) Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine Tob Res 5:621–624 (pii:6DCURVYMPL1C6UQ5)PubMedGoogle Scholar
  10. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd (2006a) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79:480–488. doi:10.1016/j.clpt.2006.01.008 PubMedGoogle Scholar
  11. Benowitz NL, Swan GE, Jacob P 3rd, Lessov-Schlaggar CN, Tyndale RF (2006b) CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80:457–467. doi:10.1016/j.clpt.2006.08.011 PubMedGoogle Scholar
  12. Beracochea D, Boucard A, Trocme-Thibierge C, Morain P (2008) Improvement of contextual memory by S 24795 in aged mice: comparison with memantine. Psychopharmacology (Berl) 196:555–564. doi:10.1007/s00213-007-0987-5 Google Scholar
  13. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Molecular Psychiatry 13:368–373. doi:10.1038/sj.mp.4002154 PubMedGoogle Scholar
  14. Besson M, David V, Suarez S, Cormier A, Cazala P, Changeux JP, Granon S (2006) Genetic dissociation of two behaviors associated with nicotine addiction: beta-2 containing nicotinic receptors are involved in nicotine reinforcement but not in withdrawal syndrome. Psychopharmacology 187:189–199. doi:10.1007/s00213-006-0418-z PubMedGoogle Scholar
  15. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L, Fugman D, Goate AM, Hinrichs AL, Konvicka K, Martin NG, Montgomery GW, Saccone NL, Saccone SF, Wang JC, Chase GA, Rice JP, Ballinger DG (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16:24–35. doi:10.1093/hmg/ddl441 PubMedGoogle Scholar
  16. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171. doi:10.1176/appi.ajp.2008.07111711 PubMedGoogle Scholar
  17. Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M (2007) Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 27:10578–10587. doi:10.1523/JNEUROSCI.2444-07.2007 PubMedGoogle Scholar
  18. Bloom J, Hinrichs AL, Wang JC, von Weymarn LB, Kharasch ED, Bierut LJ, Goate A, Murphy SE (2011) The contribution of common CYP2A6 alleles to variation in nicotine metabolism among European-Americans. Pharmacogenet Genomics. doi: 10.1097/FPC.0b013e328346e8c0
  19. Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Riedl B, Schnizler K, van der Staay FJ, van Kampen M, Wiese WB, Koenig G (2007) The novel alpha7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321:716–725. doi:10.1124/jpet.106.118976 PubMedGoogle Scholar
  20. Borrelli B, Hecht JP, Papandonatos GD, Emmons KM, Tatewosian LR, Abrams DB (2001) Smoking-cessation counseling in the home. Attitudes, beliefs, and behaviors of home healthcare nurses. Am J Prev Med 21:272–277PubMedGoogle Scholar
  21. Breitling LP, Dahmen N, Mittelstrass K, Illig T, Rujescu D, Raum E, Winterer G, Brenner H (2009a) Smoking cessation and variations in nicotinic acetylcholine receptor subunits alpha-5, alpha-3, and beta-4 genes. Biol Psychiatry 65:691–695. doi:10.1016/j.biopsych.2008.10.004 PubMedGoogle Scholar
  22. Breitling LP, Dahmen N, Mittelstrass K, Rujescu D, Gallinat J, Fehr C, Giegling I, Lamina C, Illig T, Muller H, Raum E, Rothenbacher D, Wichmann HE, Brenner H, Winterer G (2009b) Association of nicotinic acetylcholine receptor subunit alpha 4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J 9:219–224. doi:10.1038/tpj.2009.6 PubMedGoogle Scholar
  23. Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (−)-nicotine and novel cholinergic channel modulators. Adv Pharmacol 37:153–214PubMedGoogle Scholar
  24. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915. doi:10.1001/archpsyc.63.8.907 PubMedGoogle Scholar
  25. Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47:572–579. doi:10.1016/j.neuropharm.2004.05.005 PubMedGoogle Scholar
  26. Butt CM, King NM, Hutton SR, Collins AC, Stitzel JA (2005) Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism. Behav Neurosci 119:26–37. doi:10.1037/0735-7044.119.1.26 PubMedGoogle Scholar
  27. Cahill K, Stead LF, Lancaster T (2011) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 2: CD006103. doi:10.1002/14651858.CD006103.pub5
  28. Caporaso N, Gu F, Chatterjee N, Sheng-Chih J, Yu K, Yeager M, Chen C, Jacobs K, Wheeler W, Landi MT, Ziegler RG, Hunter DJ, Chanock S, Hankinson S, Kraft P, Bergen AW (2009) Genome-wide and candidate gene association study of cigarette smoking behaviors. PloS One 4:e4653. doi:10.1371/journal.pone.0004653 PubMedGoogle Scholar
  29. CDC (2010) Vital signs: current cigarette smoking among adults aged >18, 2009. Morb Mortal Wkly Rep 59:1135–1140Google Scholar
  30. Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM, Changeux JP (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208–1217PubMedGoogle Scholar
  31. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829PubMedGoogle Scholar
  32. Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nature Rev Neurosci 11:389–401. doi:10.1038/nrn2849 Google Scholar
  33. Cokkinides VE, Ward E, Jemal A, Thun MJ (2005) Under-use of smoking-cessation treatments: results from the National Health Interview Survey, 2000. Am J Prev Med 28:119–122. doi:10.1016/j.amepre.2004.09.007 PubMedGoogle Scholar
  34. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, Bergen AW, Swan GE, Tyndale RF, Benowitz NL, Lerman C (2008) Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet 17:2834–2848. doi:10.1093/hmg/ddn181 PubMedGoogle Scholar
  35. Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107:285–289Google Scholar
  36. Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284PubMedGoogle Scholar
  37. Court JA, Lloyd S, Thomas N, Piggott MA, Marshall EF, Morris CM, Lamb H, Perry RH, Johnson M, Perry EK (1998) Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 87:63–78PubMedGoogle Scholar
  38. Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307:526–534. doi:10.1124/jpet.103.054908 PubMedGoogle Scholar
  39. Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446 (pii:S0091305701006529)PubMedGoogle Scholar
  40. David SP, Brown RA, Papandonatos GD, Kahler CW, Lloyd-Richardson EE, Munafo MR, Shields PG, Lerman C, Strong D, McCaffery J, Niaura R (2007) Pharmacogenetic clinical trial of sustained-release bupropion for smoking cessation. Nicotine Tob Res 9:821–833. doi:10.1080/14622200701382033 PubMedGoogle Scholar
  41. Davila-Garcia MI, Musachio JL, Kellar KJ (2003) Chronic nicotine administration does not increase nicotinic receptors labeled by [125I]epibatidine in adrenal gland, superior cervical ganglia, pineal or retina. J Neurochem 85:1237–1246. (pii:1774) PubMedGoogle Scholar
  42. Davis JA, Gould TJ (2007) Beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology 190:343–352. doi:10.1007/s00213-006-0624-8 PubMedGoogle Scholar
  43. Dawkins L, Powell JH, Pickering A, Powell J, West R (2009) Patterns of change in withdrawal symptoms, desire to smoke, reward motivation and response inhibition across 3 months of smoking abstinence. Addiction 104:850–858. doi:10.1111/j.1360-0443.2009.02522.x PubMedGoogle Scholar
  44. Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, Benowitz NL (2004) Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther 76:64–72. doi:10.1016/j.clpt.2004.02.011 PubMedGoogle Scholar
  45. Dicke KE, Skrlin SM, Murphy SE (2005) Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab Dispos 33:1760–1764. doi:10.1124/dmd.105.006718 PubMedGoogle Scholar
  46. Diehl A, Nakovics H, Croissant B, Smolka MN, Batra A, Mann K (2006) Galantamine reduces smoking in alcohol-dependent patients: a randomized, placebo-controlled trial. Int J Clin Pharmacol Ther 44:614–622PubMedGoogle Scholar
  47. Dizgah IM, Karimian SM, Zarrindast MR, Sohanaki H (2005) Attenuation of morphine withdrawal signs by a D1 receptor agonist in the locus coeruleus of rats. Neuroreport 16:1683–1686. (pii:00001756-200510170-00014)PubMedGoogle Scholar
  48. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136. doi:10.1016/j.neuron.2008.09.009 PubMedGoogle Scholar
  49. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, Onland-Moret NC (2009) Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33:419–431. doi:10.1002/gepi.20395 PubMedGoogle Scholar
  50. Erlitzki R, Long JC, Theil EC (2002) Multiple, conserved iron-responsive elements in the 3′-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2. J Biol Chem 277:42579–42587. doi:10.1074/jbc.M207918200 PubMedGoogle Scholar
  51. Etter JF (2005) A comparison of the content-, construct- and predictive validity of the cigarette dependence scale and the Fagerstrom test for nicotine dependence. Drug Alcohol Depend 77:259–268. doi:10.1016/j.drugalcdep.2004.08.015 PubMedGoogle Scholar
  52. Fagerstrom KO (1978) Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 3:235–241PubMedGoogle Scholar
  53. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, Lindley CM (2000) Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 28:1222–1230PubMedGoogle Scholar
  54. Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S, Wang L, Laird N (2004) A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 75:112–121. doi:10.1086/422194 PubMedGoogle Scholar
  55. Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR et al (1995) A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 57:651–660PubMedGoogle Scholar
  56. Fidler JA, Shahab L, West R (2011) Strength of urges to smoke as a measure of severity of cigarette dependence: comparison with the Fagerstrom Test for Nicotine Dependence and its components. Addiction 106:631–638. doi:10.1111/j.1360-0443.2010.03226.x PubMedGoogle Scholar
  57. Fiore MC, Jaen CR, Baker TB et al (2008) Treating tobacco use and dependence: 2008 update. Clinical Practice Guideline. US Department of Health and Human Services, Public Health Service; 2008Google Scholar
  58. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37PubMedGoogle Scholar
  59. Flores CM, Davila-Garcia MI, Ulrich YM, Kellar KJ (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J Neurochem 69:2216–2219PubMedGoogle Scholar
  60. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601. doi:10.1038/nature09797 PubMedGoogle Scholar
  61. Freathy RM, Ring SM, Shields B, Galobardes B, Knight B, Weedon MN, Smith GD, Frayling TM, Hattersley AT (2009) A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of women to quit smoking in pregnancy. Hum Mol Genet 18:2922–2927. doi:10.1093/hmg/ddp216 PubMedGoogle Scholar
  62. Fujieda M, Yamazaki H, Saito T, Kiyotani K, Gyamfi MA, Sakurai M, Dosaka-Akita H, Sawamura Y, Yokota J, Kunitoh H, Kamataki T (2004) Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 25:2451–2458. doi:10.1093/carcin/bgh258 PubMedGoogle Scholar
  63. Furberg H, Ostroff J, Lerman C, Sullivan PF (2010) The public health utility of genome-wide association study results for smoking behavior. Genome Med 2:26. doi:10.1186/gm147 PubMedGoogle Scholar
  64. Gaimarri A, Moretti M, Riganti L, Zanardi A, Clementi F, Gotti C (2007) Regulation of neuronal nicotinic receptor traffic and expression. Brain Res Rev 55:134–143. doi:10.1016/j.brainresrev.2007.02.005 PubMedGoogle Scholar
  65. Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286:311–320PubMedGoogle Scholar
  66. Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, Watsky EJ, Gong J, Williams KE, Reeves KR (2006) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 296:47–55. doi:10.1001/jama.296.1.47 PubMedGoogle Scholar
  67. Goodz SD, Tyndale RF (2002) Genotyping human CYP2A6 variants. Methods Enzymol 357:59–69PubMedGoogle Scholar
  68. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396. doi:10.1016/j.pneurobio.2004.09.006 PubMedGoogle Scholar
  69. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491. doi:10.1016/j.tips.2006.07.004 PubMedGoogle Scholar
  70. Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111. doi:10.1016/j.bcp.2007.05.023 PubMedGoogle Scholar
  71. Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78:756–765. doi:10.1016/j.bcp.2009.06.011 PubMedGoogle Scholar
  72. Grabus SD, Martin BR, Batman AM, Tyndale RF, Sellers E, Damaj MI (2005) Nicotine physical dependence and tolerance in the mouse following chronic oral administration. Psychopharmacology 178:183–192. doi:10.1007/s00213-004-2007-3 PubMedGoogle Scholar
  73. Greenbaum L, Lerer B (2009) Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry 14:912–945. doi:10.1038/mp.2009.59 PubMedGoogle Scholar
  74. Greenbaum L, Kanyas K, Karni O, Merbl Y, Olender T, Horowitz A, Yakir A, Lancet D, Ben-Asher E, Lerer B (2006) Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol psychiatry 11: 312–22, 223. doi:10.1038/sj.mp.4001774
  75. Greenwood PM, Fossella JA, Parasuraman R (2005) Specificity of the effect of a nicotinic receptor polymorphism on individual differences in visuospatial attention. J Cogn Neurosci 17:1611–1620. doi:10.1162/089892905774597281 PubMedGoogle Scholar
  76. Gronier B, Perry KW, Rasmussen K (2000) Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology 147:347–355PubMedGoogle Scholar
  77. Gu DF, Hinks LJ, Morton NE, Day IN (2000) The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann Hum Genet 64:383–390PubMedGoogle Scholar
  78. Hamidovic A, Kasberger JL, Young TR, Goodloe RJ, Redline S, Buxbaum SG, Benowitz NL, Bergen AW, Butler KR, Franceschini N, Gharib SA, Hitsman B, Levy D, Meng Y, Papanicolaou GJ, Preis SR, Spring B, Styn MA, Tong EK, White WB, Wiggins KL, Jorgenson E (2011) Genetic variability of smoking persistence in African Americans. Cancer Prev Res 4:729–734. doi:10.1158/1940-6207.CAPR-10-0362 Google Scholar
  79. Han S, Gelernter J, Luo X, Yang BZ (2010) Meta-analysis of 15 genome-wide linkage scans of smoking behavior. Biol Psychiatry 67:12–19. doi:10.1016/j.biopsych.2009.08.028 PubMedGoogle Scholar
  80. Han S, Yang BZ, Kranzler HR, Oslin D, Anton R, Gelernter J (2011) Association of CHRNA4 polymorphisms with smoking behavior in two populations. Am J Med Genet B Neuropsychiatr Genet 156B:421–429Google Scholar
  81. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127PubMedGoogle Scholar
  82. Heitjan DF, Guo M, Ray R, Wileyto EP, Epstein LH, Lerman C (2008) Identification of pharmacogenetic markers in smoking cessation therapy. Am J Med Genet Part B Neuropsychiatr Genet 147B:712–719. doi:10.1002/ajmg.b.30669 Google Scholar
  83. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297. (pii:S0092867404003435)PubMedGoogle Scholar
  84. Hernandez LM, Blazer DG (2006) Genes, behavior, and the social environment: moving beyond the nature/nurture debate. National Academies Press, Washington, DCGoogle Scholar
  85. Hernandez CM, Terry AV Jr (2005) Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience 130:997–1012. doi:10.1016/j.neuroscience.2004.10.006 PubMedGoogle Scholar
  86. Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL, Greenblatt DJ, Court MH (2004) Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238. doi:10.1097/00008571-200404000-00002 PubMedGoogle Scholar
  87. Ho MK, Mwenifumbo JC, Al Koudsi N, Okuyemi KS, Ahluwalia JS, Benowitz NL, Tyndale RF (2009) Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin Pharmacol Ther 85:635–643. doi:10.1038/clpt.2009.19 PubMedGoogle Scholar
  88. Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA (2009) Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 34:698–706. doi:10.1038/npp.2008.122 PubMedGoogle Scholar
  89. Hogg RC, Bertrand D (2004) Nicotinic acetylcholine receptors as drug targets. Current drug targets. CNS Neurol Disord 3:123–130Google Scholar
  90. Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46. doi:10.1007/s10254-003-0005-1 PubMedGoogle Scholar
  91. Hoyle E, Genn RF, Fernandes C, Stolerman IP (2006) Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology (Berl) 189:211–223. doi:10.1007/s00213-006-0549-2 Google Scholar
  92. Hughes JR, Stead LF, Lancaster T (2007) Antidepressants for smoking cessation. Cochrane Database Syst Rev CD000031. doi:10.1002/14651858.CD000031.pub3
  93. Hughes JR, Solomon LJ, Livingston AE, Callas PW, Peters EN (2010) A randomized, controlled trial of NRT-aided gradual vs. abrupt cessation in smokers actively trying to quit. Drug Alcohol Depend 111:105–113. doi:10.1016/j.drugalcdep.2010.04.007 PubMedGoogle Scholar
  94. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115. doi:10.1124/pr.57.1.3 PubMedGoogle Scholar
  95. Hutchison KE, Allen DL, Filbey FM, Jepson C, Lerman C, Benowitz NL, Stitzel J, Bryan A, McGeary J, Haughey HM (2007) CHRNA4 and tobacco dependence: from gene regulation to treatment outcome. Arch Gen Psychiatry 64:1078–1086. doi:10.1001/archpsyc.64.9.1078 PubMedGoogle Scholar
  96. Iwahashi K, Waga C, Takimoto T (2004) Whole deletion of CYP2A6 gene (CYP2A6AST;4C) and smoking behavior. Neuropsychobiology 49:101–104. doi:10.1159/000076418 PubMedGoogle Scholar
  97. Jackson KJ, Martin BR, Changeux JP, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325:302–312. doi:10.1124/jpet.107.132977 PubMedGoogle Scholar
  98. Jackson KJ, McIntosh JM, Brunzell DH, Sanjakdar SS, Damaj MI (2009) The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol Exp Ther 331:547–554. doi:10.1124/jpet.109.155457 PubMedGoogle Scholar
  99. Jaffrey SR, Haile DJ, Klausner RD, Harford JB (1993) The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure. Nucleic Acids Res 21:4627–4631PubMedGoogle Scholar
  100. Japuntich SJ, Leventhal AM, Piper ME, Bolt DM, Roberts LJ, Fiore MC, Baker TB (2011) Smoker characteristics and smoking-cessation milestones. Am J Prev Med 40:286–294. doi:10.1016/j.amepre.2010.11.016 PubMedGoogle Scholar
  101. Johnstone E, Benowitz N, Cargill A, Jacob R, Hinks L, Day I, Murphy M, Walton R (2006) Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther 80:319–330. doi:10.1016/j.clpt.2006.06.011 PubMedGoogle Scholar
  102. Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, Yakel JL (2002) Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol 540:425–434. (pii:PHY_13847) PubMedGoogle Scholar
  103. King DP, Paciga S, Pickering E, Benowitz NL, Bierut LJ, Conti DV, Kaprio J, Lerman C, Park PW (2011) Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology. http://www.nature.com/npp/journal/vaop/ncurrent/suppinfo/npp2011232s1.html
  104. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463Google Scholar
  105. Koob GF, Heinrichs SC, Pich EM, Menzaghi F, Baldwin H, Miczek K, Britton KT (1993) The role of corticotropin-releasing factor in behavioural responses to stress. Ciba Found Symp 172: 277–289 (discussion 290–295)Google Scholar
  106. Kubota T, Nakajima-Taniguchi C, Fukuda T, Funamoto M, Maeda M, Tange E, Ueki R, Kawashima K, Hara H, Fujio Y, Azuma J (2006) CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation. Pharmacogenomics J 6:115–119. doi:10.1038/sj.tpj.6500348 PubMedGoogle Scholar
  107. Kuryatov A, Berrettini W, Lindstrom J (2011) Acetylcholine receptor (AChR) alpha5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (alpha4beta2)alpha5 AChR function. Mol Pharmacol 79:119–125. doi:10.1124/mol.110.066357 PubMedGoogle Scholar
  108. Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci USA 98:2786–2791. doi:10.1073/pnas.041582598 PubMedGoogle Scholar
  109. Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindstrom JM, Fan H, McIntosh JM, Grady SR, Quik M (2005) Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 67:1639–1647. doi:10.1124/mol.104.006429 PubMedGoogle Scholar
  110. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415PubMedGoogle Scholar
  111. Laviolette SR, van der Kooy D (2003) The motivational valence of nicotine in the rat ventral tegmental area is switched from rewarding to aversive following blockade of the alpha7-subunit-containing nicotinic acetylcholine receptor. Psychopharmacology (Berl) 166:306–313. doi:10.1007/s00213-002-1317-6 Google Scholar
  112. Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nature Rev Neurosci 5:55–65. doi:10.1038/nrn1298 Google Scholar
  113. Le Houezec J (2003) Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review. Int J Tuber Lung Dis 7:811–819Google Scholar
  114. Learned-Coughlin SM, Bergstrom M, Savitcheva I, Ascher J, Schmith VD, Langstrom B (2003) In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 54:800–805PubMedGoogle Scholar
  115. Lee AM, Jepson C, Hoffmann E, Epstein L, Hawk LW, Lerman C, Tyndale RF (2007) CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry 62:635–641. doi:10.1016/j.biopsych.2006.10.005 PubMedGoogle Scholar
  116. Lerman C, Shields PG, Wileyto EP, Audrain J, Pinto A, Hawk L, Krishnan S, Niaura R, Epstein L (2002) Pharmacogenetic investigation of smoking cessation treatment. Pharmacogenetics 12:627–634PubMedGoogle Scholar
  117. Lerman C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A, Benowitz N (2006) Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther 79:600–608. doi:10.1016/j.clpt.2006.02.006 PubMedGoogle Scholar
  118. Lerman C, Jepson C, Wileyto EP, Patterson F, Schnoll R, Mroziewicz M, Benowitz N, Tyndale RF (2010) Genetic variation in nicotine metabolism predicts the efficacy of extended-duration transdermal nicotine therapy. Clin Pharmacol Ther 87:553–557. doi:10.1038/clpt.2010.3 PubMedGoogle Scholar
  119. Lessov CN, Martin NG, Statham DJ, Todorov AA, Slutske WS, Bucholz KK, Heath AC, Madden PA (2004) Defining nicotine dependence for genetic research: evidence from Australian twins. Psychol Med 34:865–879PubMedGoogle Scholar
  120. Levi M, Dempsey DA, Benowitz NL, Sheiner LB (2007) Prediction methods for nicotine clearance using cotinine and 3-hydroxy-cotinine spot saliva samples II. Model application. J Pharmacokinet Pharmacodyn 34:23–34. doi:10.1007/s10928-006-9026-0 PubMedGoogle Scholar
  121. Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53:633–640. doi:10.1002/neu.10151 PubMedGoogle Scholar
  122. Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats. Behav Pharmacol 10:675–680PubMedGoogle Scholar
  123. Levin ED, Sledge D, Baruah A, Addy NA (2003) Ventral hippocampal NMDA blockade and nicotinic effects on memory function. Brain Res Bull 61:489–495. (pii:S0361923003001837)PubMedGoogle Scholar
  124. Li MD (2008) Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 123:119–131. doi:10.1007/s00439-008-0473-0 PubMedGoogle Scholar
  125. Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31PubMedGoogle Scholar
  126. Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, Duenes AS, Crews KM, Elston RC (2005) Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 14:1211–1219. doi:10.1093/hmg/ddi132 PubMedGoogle Scholar
  127. Li MD, Lou XY, Chen G, Ma JZ, Elston RC (2008) Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 64:951–957. doi:10.1016/j.biopsych.2008.04.026 PubMedGoogle Scholar
  128. Li MD, Yoon D, Lee JY, Han BG, Niu T, Payne TJ, Ma JZ, Park T (2010) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PloS One 5:e12183. doi:10.1371/journal.pone.0012183 PubMedGoogle Scholar
  129. Liang Y, Salas R, Marubio L, Bercovich D, De Biasi M, Beaudet AL, Dani JA (2005) Functional polymorphisms in the human beta4 subunit of nicotinic acetylcholine receptors. Neurogenetics 6:37–44. doi:10.1007/s10048-004-0199-7 PubMedGoogle Scholar
  130. Liu YZ, Pei YF, Guo YF, Wang L, Liu XG, Yan H, Xiong DH, Zhang YP, Levy S, Li J, Haddock CK, Papasian CJ, Xu Q, Ma JZ, Payne TJ, Recker RR, Li MD, Deng HW (2009) Genome-wide association analyses suggested a novel mechanism for smoking behavior regulated by IL15. Mol Psychiatry 14:668–680. doi:10.1038/mp.2009.3 PubMedGoogle Scholar
  131. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G, Vollenweider P, Preisig M, Wareham NJ, Zhao JH, Loos RJ, Barroso I, Khaw KT, Grundy S, Barter P, Mahley R, Kesaniemi A, McPherson R, Vincent JB, Strauss J, Kennedy JL, Farmer A, McGuffin P, Day R, Matthews K, Bakke P, Gulsvik A, Lucae S, Ising M, Brueckl T, Horstmann S, Wichmann HE, Rawal R, Dahmen N, Lamina C, Polasek O, Zgaga L, Huffman J, Campbell S, Kooner J, Chambers JC, Burnett MS, Devaney JM, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein S, Wilson JF, Wild SH, Campbell H, Vitart V, Reilly MP, Li M, Qu L, Wilensky R, Matthai W, Hakonarson HH, Rader DJ, Franke A, Wittig M, Schafer A, Uda M, Terracciano A, Xiao X, Busonero F, Scheet P, Schlessinger D, St Clair D, Rujescu D, Abecasis GR, Grabe HJ, Teumer A, Volzke H, Petersmann A, John U, Rudan I, Hayward C, Wright AF, Kolcic I, Wright BJ, Thompson JR, Balmforth AJ, Hall AS, Samani NJ, Anderson CA, Ahmad T, Mathew CG, Parkes M, Satsangi J, Caulfield M, Munroe PB, Farrall M, Dominiczak A, Worthington J et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440. doi:10.1038/ng.572 PubMedGoogle Scholar
  132. Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger UM, McLachlan AJ (2006) Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 80:75–84. doi:10.1016/j.clpt.2006.03.010 PubMedGoogle Scholar
  133. Malaiyandi V, Sellers EM, Tyndale RF (2005) Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 77:145–158. doi:10.1016/j.clpt.2004.10.011 PubMedGoogle Scholar
  134. Malaiyandi V, Lerman C, Benowitz NL, Jepson C, Patterson F, Tyndale RF (2006) Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy. Mol Psychiatry 11:400–409. doi:10.1038/sj.mp.4001794 PubMedGoogle Scholar
  135. Malin DH, Lake JR, Upchurch TP, Shenoi M, Rajan N, Schweinle WE (1998) Nicotine abstinence syndrome precipitated by the competitive nicotinic antagonist dihydro-beta-erythroidine. Pharmacol Biochem Behav 60:609–613. (pii:S0091-3057(98)00028-8)PubMedGoogle Scholar
  136. Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53:606–617. doi:10.1002/neu.10148 PubMedGoogle Scholar
  137. Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919PubMedGoogle Scholar
  138. Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ (2008) The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 104:446–456. doi:10.1111/j.1471-4159.2007.05011.x PubMedGoogle Scholar
  139. Marchant NL, Trawley S, Rusted JM (2008) Prospective memory or prospective attention: physiological and pharmacological support for an attentional model. Int J Neuropsychopharmacol 11:401–411. doi:10.1017/S146114570700819X PubMedGoogle Scholar
  140. Marighetto A, Valerio S, Desmedt A, Philippin JN, Trocme-Thibierge C, Morain P (2008) Comparative effects of the alpha7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology (Berl) 197:499–508. doi:10.1007/s00213-007-1063-x Google Scholar
  141. Markou A, Paterson NE (2001) The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine Tob Res 3:361–373. doi:10.1080/14622200110073380 PubMedGoogle Scholar
  142. Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18:135–174. doi:10.1016/S0893-133X(97)00113-9 PubMedGoogle Scholar
  143. Marks JL, Pomerleau CS, Pomerleau OF (1999) Effects of menstrual phase on reactivity to nicotine. Addict Behav 24:127–134PubMedGoogle Scholar
  144. Marks MJ, Rowell PP, Cao JZ, Grady SR, McCallum SE, Collins AC (2004) Subsets of acetylcholine-stimulated 86Rb+ efflux and [125I]-epibatidine binding sites in C57BL/6 mouse brain are differentially affected by chronic nicotine treatment. Neuropharmacology 46:1141–1157. doi:10.1016/j.neuropharm.2004.02.009 PubMedGoogle Scholar
  145. Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena C, Le Novere N, de Kerchove d’Exaerde A, Huchet M, Damaj MI, Changeux JP (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810. doi:10.1038/19756 PubMedGoogle Scholar
  146. McCallum SE, Collins AC, Paylor R, Marks MJ (2006) Deletion of the beta 2 nicotinic acetylcholine receptor subunit alters development of tolerance to nicotine and eliminates receptor upregulation. Psychopharmacology (Berl) 184:314–327. doi:10.1007/s00213-005-0076-6 Google Scholar
  147. Messina ES, Tyndale RF, Sellers EM (1997) A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 282:1608–1614PubMedGoogle Scholar
  148. Minematsu N, Nakamura H, Iwata M, Tateno H, Nakajima T, Takahashi S, Fujishima S, Yamaguchi K (2003) Association of CYP2A6 deletion polymorphism with smoking habit and development of pulmonary emphysema. Thorax 58:623–628PubMedGoogle Scholar
  149. Mineur YS, Picciotto MR (2008) Genetics of nicotinic acetylcholine receptors: relevance to nicotine addiction. Biochem Pharmacol 75:323–333. doi:10.1016/j.bcp.2007.06.010 PubMedGoogle Scholar
  150. Moore D, Aveyard P, Connock M, Wang D, Fry-Smith A, Barton P (2009) Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: systematic review and meta-analysis. BMJ 338:b1024. doi:10.1136/bmj.b1024 PubMedGoogle Scholar
  151. Munafo MR, Johnstone EC (2008) Genes and cigarette smoking. Addiction 103:893–904. doi:10.1111/j.1360-0443.2007.02071.x PubMedGoogle Scholar
  152. Munafo MR, Johnstone EC, Walther D, Uhl GR, Murphy MF, Aveyard P (2011) CHRNA3 rs1051730 Genotype and short-term smoking cessation. Nicotine Tob Res. doi:10.1093/ntr/ntr106
  153. Mwenifumbo JC, Tyndale RF (2007) Genetic variability in CYP2A6 and the pharmacokinetics of nicotine. Pharmacogenomics 8:1385–1402. doi:10.2217/14622416.8.10.1385 PubMedGoogle Scholar
  154. Mwenifumbo JC, Sellers EM, Tyndale RF (2007) Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking. Drug Alcohol Depend 89:24–33. doi:10.1016/j.drugalcdep.2006.11.012 PubMedGoogle Scholar
  155. Mwenifumbo JC, Al Koudsi N, Ho MK, Zhou Q, Hoffmann EB, Sellers EM, Tyndale RF (2008) Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Hum Mutat 29:679–688. doi:10.1002/humu.20698 PubMedGoogle Scholar
  156. Nakajama M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshid R, Kwon J, McLeod H, Yokoi T (2006) Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther 80:282–297Google Scholar
  157. Nashmi R, Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 30:181–184. doi:10.1385/JMN:30:1:181 PubMedGoogle Scholar
  158. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449. doi:10.1038/nn1578 PubMedGoogle Scholar
  159. Nguyen HN, Rasmussen BA, Perry DC (2003) Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther 307:1090–1097. doi:10.1124/jpet.103.056408 PubMedGoogle Scholar
  160. Nisell M, Nomikos GG, Svensson TH (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44. doi:10.1002/syn.890160105 PubMedGoogle Scholar
  161. Palma E, Maggi L, Barabino B, Eusebi F, Ballivet M (1999) Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. J Biol Chem 274:18335–18340PubMedGoogle Scholar
  162. Papke RL, Sanberg PR, Shytle RD (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 297:646–656PubMedGoogle Scholar
  163. Patterson F, Schnoll RA, Wileyto EP, Pinto A, Epstein LH, Shields PG, Hawk LW, Tyndale RF, Benowitz N, Lerman C (2008) Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion. Clin Pharmacol Ther 84:320–325. doi:10.1038/clpt.2008.57 PubMedGoogle Scholar
  164. Patterson F, Jepson C, Loughead J, Perkins K, Strasser AA, Siegel S, Frey J, Gur R, Lerman C (2010) Working memory deficits predict short-term smoking resumption following brief abstinence. Drug Alcohol Depend 106:61–64. doi:10.1016/j.drugalcdep.2009.07.020 PubMedGoogle Scholar
  165. Pergadia ML, Heath AC, Martin NG, Madden PA (2006) Genetic analyses of DSM-IV nicotine withdrawal in adult twins. Psychol Med 36:963–972. doi:10.1017/S0033291706007495 PubMedGoogle Scholar
  166. Perkins KA, Lerman C, Mercincavage M, Fonte CA, Briski JL (2009) Nicotinic acetylcholine receptor beta2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch. Cancer Epidemiol Biomarkers Prev 18:2608–2612. doi:10.1158/1055-9965.EPI-09-0166 PubMedGoogle Scholar
  167. Perry DC, Mao D, Gold AB, McIntosh JM, Pezzullo JC, Kellar KJ (2007) Chronic nicotine differentially regulates alpha6- and beta3-containing nicotinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 322:306–315. doi:10.1124/jpet.107.121228 PubMedGoogle Scholar
  168. Pianezza ML, Sellers EM, Tyndale RF (1998) Nicotine metabolism defect reduces smoking. Nature 393:750. doi:10.1038/31623 PubMedGoogle Scholar
  169. Picciotto MR, Corrigall WA (2002) Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 22:3338–3341. (pii:20026360)PubMedGoogle Scholar
  170. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177. doi:10.1038/34413 PubMedGoogle Scholar
  171. Piper ME, Piasecki TM, Federman EB, Bolt DM, Smith SS, Fiore MC, Baker TB (2004) A multiple motives approach to tobacco dependence: the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68). J Consult Clin Psychol 72:139–154. doi:10.1037/0022-006X.72.2.139 PubMedGoogle Scholar
  172. Piper ME, McCarthy DE, Baker TB (2006) Assessing tobacco dependence: a guide to measure evaluation and selection. Nicotine Tob Res 8:339–351. doi:10.1080/14622200600672765 PubMedGoogle Scholar
  173. Pomerleau OF, Pomerleau CS, Mehringer AM, Snedecor SM, Ninowski R, Sen A (2005) Nicotine dependence, depression, and gender: characterizing phenotypes based on withdrawal discomfort, response to smoking, and ability to abstain. Nicotine Tob Res 7:91–102. doi:10.1080/14622200412331328466 PubMedGoogle Scholar
  174. Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28:12318–12327. doi:10.1523/JNEUROSCI.3918-08.2008 PubMedGoogle Scholar
  175. Portugal GS, Gould TJ (2008) Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 193:1–16. doi:10.1016/j.bbr.2008.05.006 PubMedGoogle Scholar
  176. Portugal GS, Kenney JW, Gould TJ (2008) Beta2 subunit containing acetylcholine receptors mediate nicotine withdrawal deficits in the acquisition of contextual fear conditioning. Neurobiol Learn Mem 89:106–113. doi:10.1016/j.nlm.2007.05.002 PubMedGoogle Scholar
  177. Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351. doi:10.1038/380347a0 PubMedGoogle Scholar
  178. Rao Y, Hoffmann E, Zia M, Bodin L, Zeman M, Sellers EM, Tyndale RF (2000) Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking. Mol Pharmacol 58:747–755PubMedGoogle Scholar
  179. Ray R, Tyndale RF, Lerman C (2009) Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 23:252–261. doi:10.1080/01677060802572887 PubMedGoogle Scholar
  180. Ray R, Mitra N, Baldwin D, Guo M, Patterson F, Heitjan DF, Jepson C, Wileyto EP, Wei J, Payne T, Ma JZ, Li MD, Lerman C (2010) Convergent evidence that choline acetyltransferase gene variation is associated with prospective smoking cessation and nicotine dependence. Neuropsychopharmacology 35:1374–1382. doi:10.1038/npp.2010.7 PubMedGoogle Scholar
  181. Raybuck JD, Gould TJ (2009) Nicotine withdrawal-induced deficits in trace fear conditioning in C57BL/6 mice—a role for high-affinity beta2 subunit-containing nicotinic acetylcholine receptors. Eur J Neurosci 29:377–387. doi:10.1111/j.1460-9568.2008.06580.x PubMedGoogle Scholar
  182. Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267. (pii:S0006322300010945)PubMedGoogle Scholar
  183. Ring HZ, Valdes AM, Nishita DM, Prasad S, Jacob P 3rd, Tyndale RF, Swan GE, Benowitz NL (2007) Gene-gene interactions between CYP2B6 and CYP2A6 in nicotine metabolism. Pharmacogenet Genomics 17:1007–1015. doi:10.1097/01.fpc.0000220560.59972.33 PubMedGoogle Scholar
  184. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedGoogle Scholar
  185. Roegge CS, Levin ED (2006) Nicotine receptor antagonists in rats. In: Levin ED, Buccafusco JJ (eds) Animal models of cognitive impairment. Frontiers in neuroscience, Chap 3. CRC Press, Boca RatonGoogle Scholar
  186. Rogers J, Lue LF, Walker DG, Yan SD, Stern D, Strohmeyer R, Kovelowski CJ (2002) Elucidating molecular mechanisms of Alzheimer’s disease in microglial cultures. Ernst Schering Res Found Workshop 39:25–44PubMedGoogle Scholar
  187. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD 3rd, Williams KE (2007) Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994. doi:10.1016/j.neuropharm.2006.10.016 PubMedGoogle Scholar
  188. Rubinstein ML, Benowitz NL, Auerback GM, Moscicki AB (2008) Rate of nicotine metabolism and withdrawal symptoms in adolescent light smokers. Pediatrics 122:e643–e647. doi:10.1542/peds.2007-3679 PubMedGoogle Scholar
  189. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49. doi:10.1093/hmg/ddl438 PubMedGoogle Scholar
  190. Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, Grucza RA, Sun L, Duan W, Budde J, Culverhouse RC, Fox L, Hinrichs AL, Steinbach JH, Wu M, Rice JP, Goate AM, Bierut LJ (2009) The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 69:6848–6856. doi:10.1158/0008-5472.CAN-09-0786 PubMedGoogle Scholar
  191. Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci 23:6255–6263PubMedGoogle Scholar
  192. Salas R, Cook KD, Bassetto L, De Biasi M (2004a) The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 47:401–407. doi:10.1016/j.neuropharm.2004.05.002 PubMedGoogle Scholar
  193. Salas R, Pieri F, De Biasi M (2004b) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 24:10035–10039. doi:10.1523/JNEUROSCI.1939-04.2004 PubMedGoogle Scholar
  194. Salas R, Main A, Gangitano D, De Biasi M (2007) Decreased withdrawal symptoms but normal tolerance to nicotine in mice null for the alpha7 nicotinic acetylcholine receptor subunit. Neuropharmacology 53:863–869. doi:10.1016/j.neuropharm.2007.08.017 PubMedGoogle Scholar
  195. Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci Off J Soc Neurosci 29:3014–3018. doi:10.1523/JNEUROSCI.4934-08.2009 Google Scholar
  196. Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535. doi:10.1124/mol.65.6.1526 PubMedGoogle Scholar
  197. Sarginson JE, Killen JD, Lazzeroni LC, Fortmann SP, Ryan HS, Schatzberg AF, Murphy GM Jr (2011) Markers in the 15q24 nicotinic receptor subunit gene cluster (CHRNA5-A3-B4) predict severity of nicotine addiction and response to smoking cessation therapy. Am J Med Genet Part B Neuropsychiatric Genet 156B:275–284. doi:10.1002/ajmg.b.31155 Google Scholar
  198. Schnoll RA, Lerman C (2006) Current and emerging pharmacotherapies for treating tobacco dependence. Expert Opin Emerg Drugs 11:429–444. doi:10.1517/14728214.11.3.429 PubMedGoogle Scholar
  199. Schnoll RA, Patterson F, Wileyto EP, Tyndale RF, Benowitz N, Lerman C (2009) Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: a validation study. Pharmacol Biochem Behav 92:6–11. doi:10.1016/j.pbb.2008.10.016 PubMedGoogle Scholar
  200. Schoedel KA, Hoffmann EB, Rao Y, Sellers EM, Tyndale RF (2004) Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics 14:615–626PubMedGoogle Scholar
  201. Shiffman S, Patten C, Gwaltney C, Paty J, Gnys M, Kassel J, Hickcox M, Waters A, Balabanis M (2006) Natural history of nicotine withdrawal. Addiction 101:1822–1832. doi:10.1111/j.1360-0443.2006.01635.x PubMedGoogle Scholar
  202. Silagy C, Mant D, Fowler G, Lodge M (1994) The effectiveness of nicotine replacement therapies in smoking cessation. Online J Curr Clin Trials (Doc No 113)Google Scholar
  203. Silagy C, Lancaster T, Stead L, Mant D, Fowler G (2004) Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev CD000146. doi:10.1002/14651858.CD000146.pub2
  204. Slemmer JE, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327PubMedGoogle Scholar
  205. Slotkin TA, Bodwell BE, Ryde IT, Seidler FJ (2008) Adolescent nicotine treatment changes the response of acetylcholine systems to subsequent nicotine administration in adulthood. Brain Res Bull 76:152–165. doi:10.1016/j.brainresbull.2007.12.009 PubMedGoogle Scholar
  206. Smith JW, Mogg A, Tafi E, Peacey E, Pullar IA, Szekeres P, Tricklebank M (2007) Ligands selective for alpha4beta2 but not alpha3beta4 or alpha7 nicotinic receptors generalise to the nicotine discriminative stimulus in the rat. Psychopharmacology (Berl) 190:157–170. doi:10.1007/s00213-006-0596-8 Google Scholar
  207. Stead LF, Perera R, Bullen C, Mant D, Lancaster T (2008) Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev CD000146. doi:10.1002/14651858.CD000146.pub3
  208. Stitzel JA, Jimenez M, Marks MJ, Tritto T, Collins AC (2000) Potential role of the alpha4 and alpha6 nicotinic receptor subunits in regulating nicotine-induced seizures. J Pharmacol Exp Ther 293:67–74PubMedGoogle Scholar
  209. Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2): S51–S57 (discussion S69–S70)Google Scholar
  210. Sullivan PF, Eaves LJ, Kendler KS, Neale MC (2001) Genetic case-control association studies in neuropsychiatry. Arch Gen Psychiatry 58:1015–1024. (pii:ynv20374)PubMedGoogle Scholar
  211. Swan GE, Benowitz NL, Lessov CN, Jacob P 3rd, Tyndale RF, Wilhelmsen K (2005) Nicotine metabolism: the impact of CYP2A6 on estimates of additive genetic influence. Pharmacogenet Genomics 15:115–125PubMedGoogle Scholar
  212. TAG (2010) Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447Google Scholar
  213. Tapia L, Kuryatov A, Lindstrom J (2007) Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol 71:769–776. doi:10.1124/mol.106.030445 PubMedGoogle Scholar
  214. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032. doi:10.1126/science.1099420 PubMedGoogle Scholar
  215. Terry P, Katz JL (1997) Dopaminergic mediation of the discriminative stimulus effects of bupropion in rats. Psychopharmacology 134:201–212PubMedGoogle Scholar
  216. Thorgeirsson TE, Stefansson K (2008) Genetics of smoking behavior and its consequences: the role of nicotinic acetylcholine receptors. Biol Psychiatry 64:919–921. doi:10.1016/j.biopsych.2008.09.010 PubMedGoogle Scholar
  217. Thorgeirsson TE, Stefansson K (2010) Commentary: gene-environment interactions and smoking-related cancers. Int J Epidemiol 39:577–579. doi:10.1093/ije/dyp385 PubMedGoogle Scholar
  218. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S, Gieger C, Rawal R, Mangino M, Prokopenko I, Magi R, Keskitalo K, Gudjonsdottir IH, Gretarsdottir S, Stefansson H, Thompson JR, Aulchenko YS, Nelis M, Aben KK, den Heijer M, Dirksen A, Ashraf H, Soranzo N, Valdes AM, Steves C, Uitterlinden AG, Hofman A, Tonjes A, Kovacs P, Hottenga JJ, Willemsen G, Vogelzangs N, Doring A, Dahmen N, Nitz B, Pergadia ML, Saez B, De Diego V, Lezcano V, Garcia-Prats MD, Ripatti S, Perola M, Kettunen J, Hartikainen AL, Pouta A, Laitinen J, Isohanni M, Huei-Yi S, Allen M, Krestyaninova M, Hall AS, Jones GT, van Rij AM, Mueller T, Dieplinger B, Haltmayer M, Jonsson S, Matthiasson SE, Oskarsson H, Tyrfingsson T, Kiemeney LA, Mayordomo JI, Lindholt JS, Pedersen JH, Franklin WA, Wolf H, Montgomery GW, Heath AC, Martin NG, Madden PA, Giegling I, Rujescu D, Jarvelin MR, Salomaa V, Stumvoll M, Spector TD, Wichmann HE, Metspalu A, Samani NJ, Penninx BW, Oostra BA, Boomsma DI, Tiemeier H, van Duijn CM, Kaprio J, Gulcher JR, McCarthy MI, Peltonen L, Thorsteinsdottir U, Stefansson K (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453. doi:10.1038/ng.573 PubMedGoogle Scholar
  219. Todd RD, Lobos EA, Sun LW, Neuman RJ (2003) Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 8:103–108. doi:10.1038/sj.mp.4001257 PubMedGoogle Scholar
  220. Tritto T, Stitzel JA, Marks MJ, Romm E, Collins AC (2002) Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes. Pharmacogenetics 12:197–208PubMedGoogle Scholar
  221. Tritto T, McCallum SE, Waddle SA, Hutton SR, Paylor R, Collins AC, Marks MJ (2004) Null mutant analysis of responses to nicotine: deletion of beta2 nicotinic acetylcholine receptor subunit but not alpha7 subunit reduces sensitivity to nicotine-induced locomotor depression and hypothermia. Nicotine Tob Res 6:145–158. doi:10.1080/14622200310001656966 PubMedGoogle Scholar
  222. Tucci SA, Genn RF, File SE (2003) Methyllycaconitine (MLA) blocks the nicotine evoked anxiogenic effect and 5-HT release in the dorsal hippocampus: possible role of alpha7 receptors. Neuropharmacology 44:367–373. (pii:S002839080200391X)PubMedGoogle Scholar
  223. Tyndale RF, Pianezza ML, Sellers EM (1999) A common genetic defect in nicotine metabolism decreases risk for dependence and lowers cigarette consumption. Nicotine Tob Res 1(Suppl 2): S63–S67 (discussion S69–S70)Google Scholar
  224. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE (2007) Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 8:10. doi:10.1186/1471-2156-8-10 PubMedGoogle Scholar
  225. Vink JM, Willemsen G, Boomsma DI (2005) Heritability of smoking initiation and nicotine dependence. Behav Genet 35:397–406. doi:10.1007/s10519-004-1327-8 PubMedGoogle Scholar
  226. Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, Smit JH, Hoogendijk WJ, Zitman FG, Peltonen L, Kaprio J, Pedersen NL, Magnusson PK, Spector TD, Kyvik KO, Morley KI, Heath AC, Martin NG, Westendorp RG, Slagboom PE, Tiemeier H, Hofman A, Uitterlinden AG, Aulchenko YS, Amin N, van Duijn C, Penninx BW, Boomsma DI (2009) Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet 84:367–379. doi:10.1016/j.ajhg.2009.02.001 PubMedGoogle Scholar
  227. Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology 184:339–344. doi:10.1007/s00213-005-0295-x PubMedGoogle Scholar
  228. Wang J, Li MD (2010) Common and unique biological pathways associated with smoking initiation/progression, nicotine dependence, and smoking cessation. Neuropsychopharmacology 35:702–719. doi:10.1038/npp.2009.178 PubMedGoogle Scholar
  229. Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271:17656–17665PubMedGoogle Scholar
  230. Wang J, Gutala R, Sun D, Ma JZ, Sheela RC, Ticku MK, Li MD (2007) Regulation of platelet-derived growth factor signaling pathway by ethanol, nicotine, or both in mouse cortical neurons. Alcohol Clin Exp Res 31:357–375. doi:10.1111/j.1530-0277.2006.00331.x PubMedGoogle Scholar
  231. Wei J, Ma JZ, Payne TJ, Cui W, Ray R, Mitra N, Lerman C, Li MD (2010) Replication and extension of association of choline acetyltransferase with nicotine dependence in European and African American smokers. Hum Genet 127:691–698. doi:10.1007/s00439-010-0818-3 PubMedGoogle Scholar
  232. Whiting P, Lindstrom J (1986) Pharmacological properties of immuno-isolated neuronal nicotinic receptors. J Neurosci Off J Soc Neurosci 6:3061–3069Google Scholar
  233. Whittaker VP (1988) The organization of the cholinergic synapse. Keio J Med 37:234–254PubMedGoogle Scholar
  234. Wilking JA, Hesterberg KG, Crouch EL, Homanics GE, Stitzel JA (2010) Chrna4 A529 knock-in mice exhibit altered nicotine sensitivity. Pharmacogenet Genomics 20:121–130. doi:10.1097/FPC.0b013e3283369347 PubMedGoogle Scholar
  235. Wu J, Liu Q, Yu K, Hu J, Kuo YP, Segerberg M, St John PA, Lukas RJ (2006a) Roles of nicotinic acetylcholine receptor beta subunits in function of human alpha4-containing nicotinic receptors. J Physiol 576:103–118. doi:10.1113/jphysiol.2006.114645 PubMedGoogle Scholar
  236. Wu P, Wilson K, Dimoulas P, Mills EJ (2006b) Effectiveness of smoking cessation therapies: a systematic review and meta-analysis. BMC Publ Health 6:300. doi:10.1186/1471-2458-6-300 Google Scholar
  237. Xian H, Scherrer JF, Madden PA, Lyons MJ, Tsuang M, True WR, Eisen SA (2003) The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob Res 5:245–254PubMedGoogle Scholar
  238. Xian H, Scherrer JF, Madden PA, Lyons MJ, Tsuang M, True WR, Eisen SA (2005) Latent class typology of nicotine withdrawal: genetic contributions and association with failed smoking cessation and psychiatric disorders. Psychol Med 35:409–419PubMedGoogle Scholar
  239. Xu J, Azizian A, Monterosso J, Domier CP, Brody AL, Fong TW, London ED (2008) Gender effects on mood and cigarette craving during early abstinence and resumption of smoking. Nicotine Tob Res 10:1653–1661. doi:10.1080/14622200802412929 PubMedGoogle Scholar
  240. Yamazaki H, Inoue K, Hashimoto M, Shimada T (1999) Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol 73:65–70PubMedGoogle Scholar
  241. Yang KC, Jin GZ, Wu J (2009) Mysterious alpha6-containing nAChRs: function, pharmacology, and pathophysiology. Acta Pharmacol Sin 30:740–751. doi:10.1038/aps.2009.63 PubMedGoogle Scholar
  242. Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K, Sharkey J (2007) Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol 17:145–155. doi:10.1016/j.euroneuro.2006.03.008 PubMedGoogle Scholar
  243. Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, Crowley TJ, Hewitt JK, Hopfer CJ, Lessem J, McQueen MB, Rhee SH, Ehringer MA (2008) The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 17:724–734. doi:10.1093/hmg/ddm344 PubMedGoogle Scholar
  244. Zhang H, Kranzler HR, Poling J, Gelernter J (2010) Variation in the nicotinic acetylcholine receptor gene cluster CHRNA5-CHRNA3-CHRNB4 and its interaction with recent tobacco use influence cognitive flexibility. Neuropsychopharmacology 35:2211–2224. doi:10.1038/npp.2010.95 PubMedGoogle Scholar
  245. Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, Grady SR, Marks MJ, Gardner PD, Tapper AR (2011) Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology 36:1021–1032. doi:10.1038/npp.2010.240 PubMedGoogle Scholar
  246. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Interdisciplinary Research on Nicotine AddictionUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations