Advertisement

Human Genetics

, Volume 131, Issue 7, pp 1023–1037 | Cite as

Unraveling the genetic component of systemic sclerosis

  • José Ezequiel Martín
  • Lara Bossini-Castillo
  • Javier MartínEmail author
Review Paper

Abstract

Systemic sclerosis (SSc) is a severe connective tissue disorder characterized by extensive fibrosis, vascular damage, and autoimmune events. During the last years, the number of genetic markers convincingly associated with SSc has exponentially increased. In this report, we aim to offer an updated review of the classical and novel genetic associations with SSc, analyzing the firmest and replicated signals within HLA and non-HLA genes, identified by both candidate gene and genome-wide association (GWA) studies. We will also provide an insight into the future perspectives and approaches that might shed more light into the complex genetic background underlying SSc. In spite of the remarkable advance in the field of SSc genetics during the last decade, the use of the new genetic technologies such as next generation sequencing (NGS), as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative.

Keywords

Celiac Disease Pulmonary Arterial Hypertension Mixed Connective Tissue Disease Undifferentiated Connective Tissue Disease Simeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamson P, Paterson HF, Hall A (1992) Intracellular localization of the P21rho proteins. J Cell Biol 119:617–627PubMedCrossRefGoogle Scholar
  2. Anaya JM et al (2011) Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmun RevGoogle Scholar
  3. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376PubMedCrossRefGoogle Scholar
  4. Allanore Y et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7:e1002091PubMedCrossRefGoogle Scholar
  5. Arnett FC et al (1996) Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum 39:1362–1370PubMedCrossRefGoogle Scholar
  6. Arnett FC et al (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum 44:1359–1362PubMedCrossRefGoogle Scholar
  7. Arnett FC et al (2010) Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 69:822–827PubMedCrossRefGoogle Scholar
  8. Assassi S et al (2007) Clinical, immunologic, and genetic features of familial systemic sclerosis. Arthritis Rheum 56:2031–2037PubMedCrossRefGoogle Scholar
  9. Assassi S et al (2010) Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum 62:589–598PubMedCrossRefGoogle Scholar
  10. Avouac J et al (2010) Associated autoimmune diseases in systemic sclerosis define a subset of patients with milder disease: results from 2 large cohorts of European Caucasian patients. J Rheumatol 37:608–614PubMedCrossRefGoogle Scholar
  11. Avouac J et al (2011) Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. Arthritis Rheum 63:800–809PubMedCrossRefGoogle Scholar
  12. Balada E et al (2006) Lack of association of the PTPN22 gene polymorphism R620 W with systemic sclerosis. Clin Exp Rheumatol 24:321–324PubMedGoogle Scholar
  13. Bansal V et al (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773–785PubMedCrossRefGoogle Scholar
  14. Beretta L et al (2007) Interleukin-1 gene complex polymorphisms in systemic sclerosis patients with severe restrictive lung physiology. Hum Immunol 68:603–609PubMedCrossRefGoogle Scholar
  15. Beretta L, Rueda B, Marchini M, Santaniello A, Simeón CP, Fonollosa V, Caronni M, Rios R, Castellvi I, Rodriguez L, Spanish systemic sclerosis group, Moreno A, López-Nevot MA, Escalera A, González-Escribano MF, Martin J, Scorza R (2011) A large association study confirms the role of the HLA-DRB1*1104-DQA1*0501-DQB1*0301 haplotype in systemic sclerosis genetic predisposition in European populations. Rheumatology (Oxford) (in press)Google Scholar
  16. Borowiec M et al (2009) Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci USA 106:14460–14465PubMedCrossRefGoogle Scholar
  17. Bossini-Castillo L et al (2011a) Confirmation of association of the macrophage migration inhibitory factor gene with systemic sclerosis in a large European population. Rheumatology (Oxford) 50:1976–1981CrossRefGoogle Scholar
  18. Bossini-Castillo L et al (2011b) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann Rheum Dis 70:638–641PubMedCrossRefGoogle Scholar
  19. Broen J et al (2011) A rare polymorphism in Toll Like Receptor 2 is associated with systemic sclerosis phenotype and increases production of inflammatory mediators. Arthritis Rheum (in press)Google Scholar
  20. Brooks WH et al (2010) Epigenetics and autoimmunity. J Autoimmun 34:J207–J219PubMedCrossRefGoogle Scholar
  21. Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800PubMedCrossRefGoogle Scholar
  22. Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol Immunol 40:1295–1305PubMedCrossRefGoogle Scholar
  23. Caramaschi P et al (2007) Coexistence of systemic sclerosis with other autoimmune diseases. Rheumatol Int 27:407–410PubMedCrossRefGoogle Scholar
  24. Carmona FD et al (2011) Association of a non-synonymous functional variant of the ITGAM gene with systemic sclerosis. Ann Rheum Dis 70:2050–2052PubMedCrossRefGoogle Scholar
  25. Carmona FD et al (2012) Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis 71:114–119PubMedCrossRefGoogle Scholar
  26. Chang YK et al (2009) Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:414–420PubMedCrossRefGoogle Scholar
  27. Cheung YH, Watkinson J, Anastassiou D (2011) Conditional meta-analysis stratifying on detailed HLA genotypes identifies a novel type 1 diabetes locus around TCF19 in the MHC. Hum Genet 129:161–176PubMedCrossRefGoogle Scholar
  28. Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404PubMedCrossRefGoogle Scholar
  29. Coustet B et al (2011a) Association study of ITGAM, ITGAX, and CD58 autoimmune risk loci in systemic sclerosis: results from 2 large European Caucasian cohorts. J Rheumatol 38:1033–1038PubMedCrossRefGoogle Scholar
  30. Coustet B et al (2011b) C8orf13-BLK is a genetic risk locus for systemic sclerosis and has additive effects with BANK1: results from a large french cohort and meta-analysis. Arthritis Rheum 63:2091–2096PubMedCrossRefGoogle Scholar
  31. Cunninghame Graham DS et al (2008) Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 40:83–89PubMedCrossRefGoogle Scholar
  32. Davey JW et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  33. de Bakker PI et al (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38:1166–1172PubMedCrossRefGoogle Scholar
  34. Delgado-Vega A et al (2010) Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 22:698–705PubMedCrossRefGoogle Scholar
  35. Diaz-Gallo LM et al (2011) Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann Rheum Dis 70:454–462PubMedCrossRefGoogle Scholar
  36. Dieude P et al (2008) The PTPN22 620 W allele confers susceptibility to systemic sclerosis: findings of a large case-control study of European Caucasians and a meta-analysis. Arthritis Rheum 58:2183–2188PubMedCrossRefGoogle Scholar
  37. Dieude P et al (2009a) Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum 60:225–233PubMedCrossRefGoogle Scholar
  38. Dieude P et al (2009b) STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum 60:2472–2479PubMedCrossRefGoogle Scholar
  39. Dieude P et al (2009c) BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum 60:3447–3454PubMedCrossRefGoogle Scholar
  40. Dieude P et al (2010a) Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J Rheumatol 37:987–992PubMedCrossRefGoogle Scholar
  41. Dieude P et al (2010b) Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis 69:1958–1964PubMedCrossRefGoogle Scholar
  42. Dieude P et al (2011a) Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann Rheum Dis 70:1695–1696PubMedCrossRefGoogle Scholar
  43. Dieude P et al (2011b) Association of the CD226 Ser(307) variant with systemic sclerosis: evidence of a contribution of costimulation pathways in systemic sclerosis pathogenesis. Arthritis Rheum 63:1097–1105PubMedCrossRefGoogle Scholar
  44. Dieude P et al (2011c) NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann Rheum Dis 70:668–674PubMedCrossRefGoogle Scholar
  45. Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247:332–336PubMedCrossRefGoogle Scholar
  46. Fagerholm SC et al (2006) alpha-Chain phosphorylation of the human leukocyte CD11b/CD18 (Mac-1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation. Blood 108:3379–3386PubMedCrossRefGoogle Scholar
  47. Fanning GC et al (1998) HLA associations in three mutually exclusive autoantibody subgroups in UK systemic sclerosis patients. Br J Rheumatol 37:201–207PubMedCrossRefGoogle Scholar
  48. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963PubMedCrossRefGoogle Scholar
  49. Festen EA et al (2011) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet 7:e1001283PubMedCrossRefGoogle Scholar
  50. Fonseca C et al (2006) Endothelin axis polymorphisms in patients with scleroderma. Arthritis Rheum 54:3034–3042PubMedCrossRefGoogle Scholar
  51. Frazer KA et al (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251PubMedCrossRefGoogle Scholar
  52. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003PubMedCrossRefGoogle Scholar
  53. Gateva V et al (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41:1228–1233PubMedCrossRefGoogle Scholar
  54. Gilchrist FC et al (2001) Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun 2:76–81PubMedCrossRefGoogle Scholar
  55. Gorlova O et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7:e1002178PubMedCrossRefGoogle Scholar
  56. Gough MJ, Weinberg AD (2009) OX40 (CD134) and OX40L. Adv Exp Med Biol 647:94–107PubMedCrossRefGoogle Scholar
  57. Gourh P et al (2006) Association of the PTPN22 R620 W polymorphism with anti-topoisomerase I- and anticentromere antibody-positive systemic sclerosis. Arthritis Rheum 54:3945–3953PubMedCrossRefGoogle Scholar
  58. Gourh P et al (2009) Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene–gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum 60:3794–3806PubMedCrossRefGoogle Scholar
  59. Gourh P et al (2010a) Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J Autoimmun 34:155–162PubMedCrossRefGoogle Scholar
  60. Gourh P et al (2010b) Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis 69:550–555PubMedCrossRefGoogle Scholar
  61. Graham RR et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38:550–555PubMedCrossRefGoogle Scholar
  62. Graham RR et al (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 104:6758–6763PubMedCrossRefGoogle Scholar
  63. Gregersen PK, Bucala R (2003) Macrophage migration inhibitory factor, MIF alleles, and the genetics of inflammatory disorders: incorporating disease outcome into the definition of phenotype. Arthritis Rheum 48:1171–1176PubMedCrossRefGoogle Scholar
  64. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213PubMedCrossRefGoogle Scholar
  65. Guo L et al (2009) Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-derived population. Genes Immun 10:531–538PubMedCrossRefGoogle Scholar
  66. Hall JC, Rosen A (2010) Type I interferons: crucial participants in disease amplification in autoimmunity. Nat Rev Rheumatol 6:40–49PubMedCrossRefGoogle Scholar
  67. Hom G et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909PubMedCrossRefGoogle Scholar
  68. Hudson KL (2011) Genomics, health care, and society. N Engl J Med 365:1033–1041PubMedCrossRefGoogle Scholar
  69. Hudson M et al (2008) Polyautoimmunity and familial autoimmunity in systemic sclerosis. J Autoimmun 31:156–159PubMedCrossRefGoogle Scholar
  70. Hummers LK (2010) The current state of biomarkers in systemic sclerosis. Curr Rheumatol Rep 12:34–39PubMedCrossRefGoogle Scholar
  71. Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2PubMedCrossRefGoogle Scholar
  72. Islam KB et al (1995) Molecular cloning, characterization, and chromosomal localization of a human lymphoid tyrosine kinase related to murine Blk. J Immunol 154:1265–1272PubMedGoogle Scholar
  73. Ito I et al (2009) Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum 60:1845–1850PubMedCrossRefGoogle Scholar
  74. Ito I et al (2010) Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum 62:890–895PubMedCrossRefGoogle Scholar
  75. Johnson SR et al (2011) Validation of potential classification criteria for systemic sclerosis. Arthritis Care Res (Hoboken) (in press)Google Scholar
  76. Kawaguchi Y et al (2006) NOS2 polymorphisms associated with the susceptibility to pulmonary arterial hypertension with systemic sclerosis: contribution to the transcriptional activity. Arthritis Res Ther 8:R104PubMedCrossRefGoogle Scholar
  77. Kozyrev SV et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216PubMedCrossRefGoogle Scholar
  78. Kuwana M et al (1995) HLA class II genes associated with anticentromere antibody in Japanese patients with systemic sclerosis (scleroderma). Ann Rheum Dis 54:983–987PubMedCrossRefGoogle Scholar
  79. Kuwana M et al (1999) Association of human leukocyte antigen class II genes with autoantibody profiles, but not with disease susceptibility in Japanese patients with systemic sclerosis. Intern Med 38:336–344PubMedCrossRefGoogle Scholar
  80. Laird RM, Laky K, Hayes SM (2010) Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing gammadelta T cells. J Immunol 185:6518–6527PubMedCrossRefGoogle Scholar
  81. Lee YH et al (2011) The association between the PTPN22 C1858T polymorphism and systemic sclerosis: a meta-analysis. Mol Biol Rep (in press)Google Scholar
  82. Lei W et al (2009) Abnormal DNA methylation in CD4 + T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38:369–374PubMedCrossRefGoogle Scholar
  83. LeRoy EC et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205PubMedGoogle Scholar
  84. Lim CP, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol Biosyst 2:536–550PubMedCrossRefGoogle Scholar
  85. Manetti M et al (2009) Association between a stromal cell-derived factor 1 (SDF-1/CXCL12) gene polymorphism and microvascular disease in systemic sclerosis. Ann Rheum Dis 68:408–411PubMedCrossRefGoogle Scholar
  86. Manetti M et al (2010) Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population. J Rheumatol 37:1852–1857PubMedCrossRefGoogle Scholar
  87. Manetti M et al (2011) A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum 63:247–256PubMedCrossRefGoogle Scholar
  88. Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753PubMedCrossRefGoogle Scholar
  89. Martin JE, Carmona FD, Broen JC, Simeón CP, Vonk MC, Carreira P, Ríos-Fernández R, Espinosa G, Vicente-Rabaneda E et al (2011) The autoimmune disease-associated IL2RA locus is involved in the clinical manifestations of systemic sclerosis. Genes and Immunity (in press)Google Scholar
  90. Martinez A et al (2008) Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases. Arthritis Rheum 58:2598–2602PubMedCrossRefGoogle Scholar
  91. Mattuzzi S et al (2007) Association of polymorphisms in the IL1B and IL2 genes with susceptibility and severity of systemic sclerosis. J Rheumatol 34:997–1004PubMedGoogle Scholar
  92. Mayes MD et al (2003) Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum 48:2246–2255PubMedCrossRefGoogle Scholar
  93. McHugh NJ et al (1994) Anti-centromere antibodies (ACA) in systemic sclerosis patients and their relatives: a serological and HLA study. Clin Exp Immunol 96:267–274PubMedCrossRefGoogle Scholar
  94. Monsuur AJ et al (2008) Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One 3:e2270PubMedCrossRefGoogle Scholar
  95. Mora GF (2009) Systemic sclerosis: environmental factors. J Rheumatol 36:2383–2396PubMedCrossRefGoogle Scholar
  96. Mukasa R et al (2010) Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32:616–627PubMedCrossRefGoogle Scholar
  97. Muller-Hilke B (2009) HLA class II and autoimmunity: epitope selection vs differential expression. Acta Histochem 111:379–381PubMedCrossRefGoogle Scholar
  98. Mustelin T et al (2003) Role of protein tyrosine phosphatases in T cell activation. Immunol Rev 191:139–147PubMedCrossRefGoogle Scholar
  99. Nair RP et al (2000) Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet 66:1833–1844PubMedCrossRefGoogle Scholar
  100. Nath SK et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154PubMedCrossRefGoogle Scholar
  101. Nordmark G et al (2011) Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun 12:100–109PubMedCrossRefGoogle Scholar
  102. O’Connell RM et al (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122PubMedCrossRefGoogle Scholar
  103. Orozco G et al (2009) Study of functional variants of the BANK1 gene in rheumatoid arthritis. Arthritis Rheum 60:372–379PubMedCrossRefGoogle Scholar
  104. Orozco G et al (2011) Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 70:463–468PubMedCrossRefGoogle Scholar
  105. Orru V et al (2009) A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18:569–579PubMedCrossRefGoogle Scholar
  106. O’Shea JJ (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7:1–11PubMedCrossRefGoogle Scholar
  107. Radstake TR et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429PubMedCrossRefGoogle Scholar
  108. Rahman P et al (2005) Association of SEEK1 and psoriatic arthritis in two distinct Canadian populations. Ann Rheum Dis 64:1370–1372PubMedCrossRefGoogle Scholar
  109. Rakyan VK et al (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541PubMedCrossRefGoogle Scholar
  110. Ramos-Casals M et al (2010) Targeted therapy for systemic sclerosis: how close are we? Nat Rev Rheumatol 6:269–278PubMedCrossRefGoogle Scholar
  111. Rands AL et al (2000) MHC class II associations with autoantibody and T cell immune responses to the scleroderma autoantigen topoisomerase I. J Autoimmun 15:451–458PubMedCrossRefGoogle Scholar
  112. Ranque B, Mouthon L (2010) Geoepidemiology of systemic sclerosis. Autoimmun Rev 9:A311–A318PubMedCrossRefGoogle Scholar
  113. Raychaudhuri S et al (2008) Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 40:1216–1223PubMedCrossRefGoogle Scholar
  114. Reveille JD (2003) Ethnicity and race and systemic sclerosis: how it affects susceptibility, severity, antibody genetics, and clinical manifestations. Curr Rheumatol Rep 5:160–167PubMedCrossRefGoogle Scholar
  115. Rubtsov AV et al (2010) Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev 9:494–498PubMedCrossRefGoogle Scholar
  116. Rueda B et al (2009) The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet 18:2071–2077PubMedCrossRefGoogle Scholar
  117. Rueda B et al (2010) BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann Rheum Dis 69:700–705PubMedCrossRefGoogle Scholar
  118. Saijo K et al (2003) Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4:274–279PubMedCrossRefGoogle Scholar
  119. Sigurdsson S et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537PubMedCrossRefGoogle Scholar
  120. Simeon CP et al (2009) Association of HLA class II genes with systemic sclerosis in Spanish patients. J Rheumatol 36:2733–2736PubMedCrossRefGoogle Scholar
  121. Svyryd Y et al (2010) X chromosome monosomy in primary and overlapping autoimmune diseases. Autoimmun Rev (in press)Google Scholar
  122. Tavares RM et al (2010) The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 33:181–191PubMedCrossRefGoogle Scholar
  123. Thomas D (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11:259–272PubMedCrossRefGoogle Scholar
  124. Tretter T et al (2003) Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. J Exp Med 198:1863–1873PubMedCrossRefGoogle Scholar
  125. Tsuchiya N et al (2009) Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann Rheum Dis 68:1375–1376PubMedCrossRefGoogle Scholar
  126. Uz E et al (2008) Skewed X-chromosome inactivation in scleroderma. Clin Rev Allergy Immunol 34:352–355PubMedCrossRefGoogle Scholar
  127. Valdes AM, Thomson G (2009) Several loci in the HLA class III region are associated with T1D risk after adjusting for DRB1-DQB1. Diabetes Obes Metab 11(Suppl 1):46–52PubMedCrossRefGoogle Scholar
  128. Vereecke L, Beyaert R, van Loo G (2009) The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 30:383–391PubMedCrossRefGoogle Scholar
  129. Vettori S et al (2010) The beta-fibrinogen -455 G > A gene polymorphism is associated with peripheral vascular injury in systemic sclerosis patients. Clin Exp Rheumatol 28:923–924PubMedGoogle Scholar
  130. Voskuhl R (2011) Sex differences in autoimmune diseases. Biol Sex Differ 2:1PubMedCrossRefGoogle Scholar
  131. Wang X et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372PubMedCrossRefGoogle Scholar
  132. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279PubMedCrossRefGoogle Scholar
  133. Watford WT et al (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156PubMedCrossRefGoogle Scholar
  134. Wipff J et al (2007) Association between an endoglin gene polymorphism and systemic sclerosis-related pulmonary arterial hypertension. Rheumatology (Oxford) 46:622–625CrossRefGoogle Scholar
  135. Wipff J et al (2009) Association of hypoxia-inducible factor 1A (HIF1A) gene polymorphisms with systemic sclerosis in a French European Caucasian population. Scand J Rheumatol 38:291–294PubMedCrossRefGoogle Scholar
  136. Wipff J et al (2010) Association of a KCNA5 gene polymorphism with systemic sclerosis-associated pulmonary arterial hypertension in the European Caucasian population. Arthritis Rheum 62:3093–3100PubMedCrossRefGoogle Scholar
  137. Wu SP et al (2006) Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum 54:3661–3669PubMedCrossRefGoogle Scholar
  138. Yokoyama K et al (2002) BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J 21:83–92PubMedCrossRefGoogle Scholar
  139. Zhang F et al (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481PubMedCrossRefGoogle Scholar
  140. Zhernakova A et al (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7:e1002004PubMedCrossRefGoogle Scholar
  141. Zhou X et al (2009) HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum 60:3807–3814PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • José Ezequiel Martín
    • 1
  • Lara Bossini-Castillo
    • 1
  • Javier Martín
    • 1
    Email author
  1. 1.Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Consejo Superior de Investigaciones Científicas, Parque Tecnológico Ciencias de la SaludGranadaSpain

Personalised recommendations