Human Genetics

, Volume 131, Issue 2, pp 161–173 | Cite as

Mitochondrial DNA and inflammatory diseases

  • Germaine Escames
  • Luis Carlos López
  • José Antonio García
  • Laura García-Corzo
  • Francisco Ortiz
  • Darío Acuña-Castroviejo
Review Paper

Abstract

Increasing experimental evidence supports a connection between inflammation and mitochondrial dysfunction. Both acute and chronic inflammatory diseases course with elevated free radicals production that may affect mitochondrial proteins, lipids, and mtDNA. The subsequent mitochondrial impairment produces more reactive oxygen species that further reduce the ATP generation, increasing the probability of cell death. Mitochondrial impairment in now considered a key factor in inflammation because (1) there are specific pathologies directly derived from mtDNA mutations, causing chronic inflammatory diseases such as neuromuscular and neurodegenerative disorders, (2) there are neurodegenerative, metabolic, and other inflammatory diseases in which their progression is accompanied by mitochondrial dysfunction, which is directly involved in the cell death. Recently, a direct implication of mitochondrial reactive oxygen species and, particularly, mtDNA in the innate immune response has been reported. Thus, the mitochondria should be considered targets for new therapies related to the treatment of acute and chronic inflammatory diseases, including the auto-inflammatory ones.

Bibliography

  1. Acuna CD, Escames G, Carazo A, Leon J, Khaldy H, Reiter RJ (2002) Melatonin, mitochondrial homeostasis and mitochondrial-related diseases. Curr Topics Med Chem 2:133–151CrossRefGoogle Scholar
  2. Acuna CD, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240Google Scholar
  3. Acuna-Castroviejo D, Martin M, Macias M, Escames G, Leon J, Khaldy H, Reiter RJ (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30:65–74PubMedCrossRefGoogle Scholar
  4. Acuna-Castroviejo D, Escames G, Rodriguez MI, Lopez LC (2007) Melatonin role in the mitochondrial function. Front Biosci 12:947–963PubMedCrossRefGoogle Scholar
  5. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR, Lachmann HJ, Bybee A, Gaudet R, Woo P, Feighery C, Cotter FE, Thome M, Hitman GA, Tschopp J, McDermott MF (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452PubMedCrossRefGoogle Scholar
  6. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319–325PubMedCrossRefGoogle Scholar
  7. Aliev G, Gasimov E, Obrenovich ME, Fischbach K, Shenk JC, Smith MA, Perry G (2008) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer’s disease. Vasc Health Risk Manage 4:721–730Google Scholar
  8. Alvarez-Buylla A, Lois C (1995) Neuronal stem cells in the brain of adult vertebrates. Stem Cells 13:263–272PubMedCrossRefGoogle Scholar
  9. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  10. Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit Care Med 29:S109–S116PubMedCrossRefGoogle Scholar
  11. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172:2522–2529PubMedGoogle Scholar
  12. Baharvand H, Matthaei KI (2003) The ultrastructure of mouse embryonic stem cells. Reprod Biomed Online 7:330–335PubMedCrossRefGoogle Scholar
  13. Bartz RR, Suliman HB, Fu P, Welty-Wolf K, Carraway MS, Macgarvey NC, Withers CM, Sweeney TE, Piantadosi CA (2011) Staphylococcus aureus sepsis and mitochondrial accrual of the 8-oxoguanine DNA glycosylase DNA repair enzyme in mice. Am J Respir Crit Care Med 183:226–233PubMedCrossRefGoogle Scholar
  14. Biolo G, Antonione R, De CM (2007) Glutathione metabolism in sepsis. Crit Care Med 35:S591–S595PubMedCrossRefGoogle Scholar
  15. Bogenhagen DF (2010) Does mtDNA nucleoid organization impact aging? Exp Gerontol 45:473–477PubMedCrossRefGoogle Scholar
  16. Bolanos JP, Almeida A (2006) Modulation of astroglial energy metabolism by nitric oxide. Antioxid Redox Signal 8:955–965PubMedCrossRefGoogle Scholar
  17. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedCrossRefGoogle Scholar
  18. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57PubMedCrossRefGoogle Scholar
  19. Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19:2466–2476PubMedCrossRefGoogle Scholar
  20. Callahan LA, Supinski GS (2005) Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med 172:861–868PubMedCrossRefGoogle Scholar
  21. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  22. Cardinali DP, Furio AM, Brusco LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8:218–227PubMedCrossRefGoogle Scholar
  23. Cardinali DP, Cano P, Jimenez-Ortega V, Esquifino AI (2011) Melatonin and the metabolic syndrome: physiopathologic and therapeutical implications. Neuroendocrinology 93:133–142PubMedCrossRefGoogle Scholar
  24. Carretero M, Escames G, Lopez LC, Venegas C, Dayoub JC, Garcia L, Acuna-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47:192–200PubMedCrossRefGoogle Scholar
  25. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041PubMedGoogle Scholar
  26. Cassel SL, Joly S, Sutterwala FS (2009) The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21:194–198PubMedCrossRefGoogle Scholar
  27. Chahbouni M, Escames G, Venegas C, Sevilla B, Garcia JA, Lopez LC, Munoz-Hoyos A, Molina-Carballo A, Acuna-Castroviejo D (2010) Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res 48:282–289PubMedCrossRefGoogle Scholar
  28. Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825PubMedCrossRefGoogle Scholar
  29. Chen JX, Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S569–S578PubMedGoogle Scholar
  30. Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA (1995) Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57:239–247PubMedGoogle Scholar
  31. Chen D, Lan J, Pei W, Chen J (2000) Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 61:225–236PubMedCrossRefGoogle Scholar
  32. Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A (2008) Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57:938–944PubMedCrossRefGoogle Scholar
  33. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, do Park J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478PubMedCrossRefGoogle Scholar
  34. Coto-Montes A, Tomas-Zapico C (2006) Could melatonin unbalance the equilibrium between autophagy and invasive processes? Autophagy 2:126–128PubMedGoogle Scholar
  35. Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM, Acuna-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546PubMedGoogle Scholar
  36. Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ, Napoli C (2006) The role of oxidative stress in adult critical care. Free Radic Biol Med 40:398–406PubMedCrossRefGoogle Scholar
  37. Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M, DiMauro S (2006) Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 59:859–862PubMedCrossRefGoogle Scholar
  38. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, Fruchart JC, Staels B (2001) The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep 2:42–48PubMedCrossRefGoogle Scholar
  39. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068PubMedCrossRefGoogle Scholar
  40. DiMauro S (2004) Mitochondrial medicine. Biochim Biophys Acta 1659:107–114PubMedCrossRefGoogle Scholar
  41. DiMauro S (2010) Pathogenesis and treatment of mitochondrial myopathies: recent advances. Acta Myol 29:333–338PubMedGoogle Scholar
  42. DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123PubMedCrossRefGoogle Scholar
  43. Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T (2011) Use of non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease: nested case–control study. BMJ 342:d198PubMedCrossRefGoogle Scholar
  44. Dunne A (2011) Inflammasome activation: from inflammatory disease to infection. Biochem Soc Trans 39:669–673PubMedCrossRefGoogle Scholar
  45. Escames G, Leon J, Macias M, Khaldy H, Acuna-Castroviejo D (2003) Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J 17:932–934PubMedGoogle Scholar
  46. Escames G, Acuna-Castroviejo D, Lopez LC, Tan DX, Maldonado MD, Sanchez-Hidalgo M, Leon J, Reiter RJ (2006a) Pharmacological utility of melatonin in the treatment of septic shock: experimental and clinical evidence. J Pharm Pharmacol 58:1153–1165PubMedCrossRefGoogle Scholar
  47. Escames G, Lopez LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, Leon J, Rodriguez MI, Acuna-Castroviejo D (2006b) Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res 40:71–78PubMedCrossRefGoogle Scholar
  48. Escames G, Lopez LC, Ortiz F, Lopez A, Garcia JA, Ros E, Acuna-Castroviejo D (2007) Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 274:2135–2147PubMedCrossRefGoogle Scholar
  49. Escames G, Lopez A, Garcia JA, Garcia L, Acuna-Castroviejo D, Garcia JJ, Lopez LC (2010) The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 8:182–193PubMedCrossRefGoogle Scholar
  50. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699PubMedCrossRefGoogle Scholar
  51. Fike JR, Rosi S, Limoli CL (2009) Neural precursor cells and central nervous system radiation sensitivity. Semin Radiat Oncol 19:122–132PubMedCrossRefGoogle Scholar
  52. Frazier AE, Kiu C, Stojanovski D, Hoogenraad NJ, Ryan MT (2006) Mitochondrial morphology and distribution in mammalian cells. Biol Chem 387:1551–1558PubMedCrossRefGoogle Scholar
  53. Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92PubMedGoogle Scholar
  54. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256PubMedCrossRefGoogle Scholar
  55. Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241PubMedCrossRefGoogle Scholar
  56. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  57. Galley HF (2010) Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit Care 14:230PubMedGoogle Scholar
  58. Garcia JJ, Pinol-Ripoll G, Martinez-Ballarin E, Fuentes-Broto L, Miana-Mena FJ, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuna-Castroviejo D (2010) Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP(8) mice. Neurobiol Aging (in press)Google Scholar
  59. Goldstein BJ, Mahadev K, Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311–321PubMedCrossRefGoogle Scholar
  60. Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Ali AS, Shitara H, Yonekawa H, Piantadosi CA (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176:768–777PubMedCrossRefGoogle Scholar
  61. Halberg F, Cornelissen G, Faraone P, Poeggeler B, Hardeland R, Katinas G, Schwartzkopff O, Otsuka K, Bakken EE (2005) Prokaryotic and eukaryotic unicellular chronomics. Biomed Pharmacother 59(Suppl 1):S192–S202PubMedGoogle Scholar
  62. Handschin C, Choi CS, Chin S, Kim S, Kawamori D, Kurpad AJ, Neubauer N, Hu J, Mootha VK, Kim YB, Kulkarni RN, Shulman GI, Spiegelman BM (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117:3463–3474PubMedCrossRefGoogle Scholar
  63. Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126PubMedCrossRefGoogle Scholar
  64. Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60:389–398PubMedCrossRefGoogle Scholar
  65. Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683PubMedGoogle Scholar
  66. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 29:301–305PubMedCrossRefGoogle Scholar
  67. Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembongi H, Reyes A, Spelbrink JN (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 7:311–321PubMedCrossRefGoogle Scholar
  68. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91PubMedCrossRefGoogle Scholar
  69. Howell N, Elson JL, Chinnery PF, Turnbull DM (2005) mtDNA mutations and common neurodegenerative disorders. Trends Genet 21:583–586PubMedCrossRefGoogle Scholar
  70. Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9PubMedCrossRefGoogle Scholar
  71. Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28:1317–1327PubMedCrossRefGoogle Scholar
  72. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRefGoogle Scholar
  73. Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC (2010) Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 48:20–38PubMedCrossRefGoogle Scholar
  74. Kennaway DJ, Wright H (2002) Melatonin and circadian rhythms. Curr Top Med Chem 2:199–209PubMedCrossRefGoogle Scholar
  75. Khaldy H, Escames G, Leon J, Bikjdaouene L, Acuna-Castroviejo D (2003) Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion. Neurobiol Aging 24:491–500PubMedCrossRefGoogle Scholar
  76. Kienhofer J, Haussler DJ, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Burkle A, Bachschmid MM (2009) Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 23:2034–2044PubMedCrossRefGoogle Scholar
  77. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56PubMedCrossRefGoogle Scholar
  78. Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R, Whittington M, Enriquez JA, Trevelyan AJ, Turnbull DM, Lightowlers RN (2009) Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif 42:413–424PubMedCrossRefGoogle Scholar
  79. Kozirog M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M (2011) Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res 50:261–266PubMedCrossRefGoogle Scholar
  80. Kubota T, Koike R (2010) Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol 20:213–221PubMedCrossRefGoogle Scholar
  81. Lee HK, Song JH, Shin CS, Park DJ, Park KS, Lee KU, Koh CS (1998) Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 42:161–167PubMedCrossRefGoogle Scholar
  82. Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117:2653–2662PubMedCrossRefGoogle Scholar
  83. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409PubMedCrossRefGoogle Scholar
  84. Lim S, Cho YM, Park KS, Lee HK (2010) Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Ann N Y Acad Sci 1201:166–176PubMedCrossRefGoogle Scholar
  85. Lonergan T, Brenner C, Bavister B (2006) Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol 208:149–153PubMedCrossRefGoogle Scholar
  86. Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7:289–296PubMedCrossRefGoogle Scholar
  87. Lopez LC, Escames G, Ortiz F, Ros E, Acuna-Castroviejo D (2006a) Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinol Lett 27:623–630PubMedGoogle Scholar
  88. Lopez LC, Escames G, Tapias V, Utrilla P, Leon J, Acuna-Castroviejo D (2006b) Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice: its relation with mitochondrial dysfunction and prevention by melatonin. Int J Biochem Cell Biol 38:267–278PubMedCrossRefGoogle Scholar
  89. Lopez A, Garcia JA, Escames G, Venegas C, Ortiz F, Lopez LC, Acuna-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198PubMedCrossRefGoogle Scholar
  90. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449PubMedCrossRefGoogle Scholar
  91. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509PubMedCrossRefGoogle Scholar
  92. Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A, Anbinder Y, Berkowitz D, Hartman C, Barak M, Eriksson S, Cohen N (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29:337–341PubMedCrossRefGoogle Scholar
  93. Mariathasan S (2007) ASC, Ipaf and Cryopyrin/Nalp3: bona fide intracellular adapters of the caspase-1 inflammasome. Microbes Infect 9:664–671PubMedCrossRefGoogle Scholar
  94. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218PubMedCrossRefGoogle Scholar
  95. Marti R, Nishigaki Y, Vila MR, Hirano M (2003) Alteration of nucleotide metabolism: a new mechanism for mitochondrial disorders. Clin Chem Lab Med 41:845–851PubMedCrossRefGoogle Scholar
  96. Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679PubMedGoogle Scholar
  97. Martin M, Macias M, Leon J, Escames G, Khaldy H, Acuna-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357PubMedCrossRefGoogle Scholar
  98. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefGoogle Scholar
  99. Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 27:621–668PubMedCrossRefGoogle Scholar
  100. McMorrow JP, Murphy EP (2011) Inflammation: a role for NR4A orphan nuclear receptors? Biochem Soc Trans 39:688–693PubMedCrossRefGoogle Scholar
  101. Mootha VK, Lepage P, Miller K, Bunkenborg J, Reich M, Hjerrild M, Delmonte T, Villeneuve A, Sladek R, Xu F, Mitchell GA, Morin C, Mann M, Hudson TJ, Robinson B, Rioux JD, Lander ES (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100:605–610PubMedCrossRefGoogle Scholar
  102. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593PubMedCrossRefGoogle Scholar
  103. Muller WE, Eckert A, Kurz C, Eckert GP, Leuner K (2010) Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease—therapeutic aspects. Mol Neurobiol 41:159–171PubMedCrossRefGoogle Scholar
  104. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107PubMedCrossRefGoogle Scholar
  105. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230PubMedCrossRefGoogle Scholar
  106. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474PubMedCrossRefGoogle Scholar
  107. Neven B, Prieur AM, dit Quartier MP (2008) Cryopyrinopathies: update on pathogenesis and treatment. Nat Clin Pract Rheumatol 4:481–489PubMedCrossRefGoogle Scholar
  108. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353PubMedCrossRefGoogle Scholar
  109. Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689–692PubMedCrossRefGoogle Scholar
  110. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96PubMedCrossRefGoogle Scholar
  111. Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310PubMedCrossRefGoogle Scholar
  112. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92PubMedCrossRefGoogle Scholar
  113. Reddy PH (2008) Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 10:291–315PubMedCrossRefGoogle Scholar
  114. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53PubMedCrossRefGoogle Scholar
  115. Reiter RJ (1980) Photoperiod: its importance as an impeller of pineal and seasonal reproductive rhythms. Int J Biometeorol 24:57–63PubMedCrossRefGoogle Scholar
  116. Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19:807–864PubMedCrossRefGoogle Scholar
  117. Roifman I, Beck PL, Anderson TJ, Eisenberg MJ, Genest J (2011) Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol 27:174–182PubMedCrossRefGoogle Scholar
  118. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29:342–344PubMedCrossRefGoogle Scholar
  119. Schapira AH (1999) Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim Biophys Acta 1410:159–170PubMedCrossRefGoogle Scholar
  120. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300PubMedCrossRefGoogle Scholar
  121. Semple RK, Crowley VC, Sewter CP, Laudes M, Christodoulides C, Considine RV, Vidal-Puig A, O’rahilly S (2004) Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 28:176–179PubMedCrossRefGoogle Scholar
  122. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928PubMedCrossRefGoogle Scholar
  123. Siggins RW, Zhang P, Welsh D, Lecapitaine NJ, Nelson S (2008) Stem cells, phenotypic inversion, and differentiation. Int J Clin Exp Med 1:2–21PubMedGoogle Scholar
  124. Sonnen JA, Larson EB, Walker RL, Haneuse S, Crane PK, Gray SL, Breitner JC, Montine TJ (2010) Nonsteroidal anti-inflammatory drugs are associated with increased neuritic plaques. Neurology 75:1203–1210PubMedCrossRefGoogle Scholar
  125. St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153PubMedCrossRefGoogle Scholar
  126. Stienstra R, Joosten LA, Koenen T, van TB, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Muller M, van den Berg WB, van RN, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12:593–605Google Scholar
  127. Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA (2005) No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med 38:737–745PubMedCrossRefGoogle Scholar
  128. Suliman HB, Carraway MS, Piantadosi CA (2003) Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med 167:570–579PubMedCrossRefGoogle Scholar
  129. Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64:279–288PubMedCrossRefGoogle Scholar
  130. Suliman HB, Welty-Wolf KE, Carraway MS, Schwartz DA, Hollingsworth JW, Piantadosi CA (2005) Toll-like receptor 4 mediates mitochondrial DNA damage and biogenic responses after heat-inactivated E. coli. FASEB J 19:1531–1533PubMedGoogle Scholar
  131. Svistunenko DA, Davies N, Brealey D, Singer M, Cooper CE (2006) Mitochondrial dysfunction in patients with severe sepsis: an EPR interrogation of individual respiratory chain components. Biochim Biophys Acta 1757:262–272PubMedCrossRefGoogle Scholar
  132. Sweeney TE, Suliman HB, Hollingsworth JW, Piantadosi CA (2010) Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS One 5:e11606PubMedCrossRefGoogle Scholar
  133. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279PubMedGoogle Scholar
  134. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8:383–390PubMedCrossRefGoogle Scholar
  135. Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 70:65–71PubMedCrossRefGoogle Scholar
  136. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, Vijayalaxmi, Shepherd AM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620Google Scholar
  137. Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YS, Hardeland R, Reiter RJ (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296PubMedGoogle Scholar
  138. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42PubMedCrossRefGoogle Scholar
  139. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 85:607–623PubMedGoogle Scholar
  140. Tang L, Reiter RJ, Li ZR, Ortiz GG, Yu BP, Garcia JJ (1998) Melatonin reduces the increase in 8-hydroxy-deoxyguanosine levels in the brain and liver of kainic acid-treated rats. Mol Cell Biochem 178:299–303PubMedCrossRefGoogle Scholar
  141. Tapias V, Escames G, Lopez LC, Lopez A, Camacho E, Carrion MD, Entrena A, Gallo MA, Espinosa A, Acuna-Castroviejo D (2009) Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 87:3002–3010PubMedCrossRefGoogle Scholar
  142. Ting JP, Kastner DL, Hoffman HM (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 6:183–195PubMedCrossRefGoogle Scholar
  143. Tschopp J (2011) Mitochondria: sovereign of inflammation? Eur J Immunol 41:1196–1202PubMedCrossRefGoogle Scholar
  144. Tsutsui H, Imamura M, Fujimoto J, Nakanishi K (2010) The TLR4/TRIF-mediated activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in mice. Gastroenterol Res Pract 2010:641865PubMedGoogle Scholar
  145. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446PubMedCrossRefGoogle Scholar
  146. Van BJ (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128:269–280CrossRefGoogle Scholar
  147. Voloboueva LA, Lee SW, Emery JF, Palmer TD, Giffard RG (2010) Mitochondrial protection attenuates inflammation-induced impairment of neurogenesis in vitro and in vivo. J Neurosci 30:12242–12251PubMedCrossRefGoogle Scholar
  148. Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802PubMedCrossRefGoogle Scholar
  149. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323PubMedCrossRefGoogle Scholar
  150. Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 109(Suppl 1):153–159PubMedCrossRefGoogle Scholar
  151. Wang W, Osenbroch P, Skinnes R, Esbensen Y, Bjoras M, Eide L (2010) Mitochondrial DNA integrity is essential for mitochondrial maturation during differentiation of neural stem cells. Stem Cells 28:2195–2204PubMedCrossRefGoogle Scholar
  152. Yoo YM, Jeung EB (2010) Melatonin suppresses cyclosporine A-induced autophagy in rat pituitary GH3 cells. J Pineal Res 48:204–211PubMedCrossRefGoogle Scholar
  153. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107PubMedCrossRefGoogle Scholar
  154. Zhou LZ, Johnson AP, Rando TA (2001) NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med 31:1405–1416PubMedCrossRefGoogle Scholar
  155. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140PubMedCrossRefGoogle Scholar
  156. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225PubMedCrossRefGoogle Scholar
  157. Zingarelli B (2005) Nuclear factor-kappaB. Crit Care Med 33:S414–S416PubMedCrossRefGoogle Scholar
  158. Zingarelli B, Sheehan M, Wong HR (2003) Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med 31:S105–S111PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Germaine Escames
    • 1
    • 2
  • Luis Carlos López
    • 1
    • 2
  • José Antonio García
    • 1
    • 2
  • Laura García-Corzo
    • 1
    • 2
  • Francisco Ortiz
    • 1
    • 2
  • Darío Acuña-Castroviejo
    • 1
    • 2
  1. 1.Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la SaludUniversidad de GranadaArmillaSpain
  2. 2.Departamento de Fisiología, Facultad de MedicinaUniversidad de GranadaGranadaSpain

Personalised recommendations