Human Genetics

, Volume 131, Issue 1, pp 1–31 | Cite as

Molecular genetic studies of gene identification for sarcopenia

  • Li-Jun Tan
  • Shan-Lin Liu
  • Shu-Feng Lei
  • Christopher J. Papasian
  • Hong-Wen DengEmail author
Review Paper


Sarcopenia, which is characterized by a progressive decrease of skeletal muscle mass and function with aging, is closely related to several common diseases (such as cardiovascular and airway diseases) and functional impairment/disability. Strong genetic determination has been reported for muscle mass and muscle strength, two most commonly recognized and studied risk phenotypes for sarcopenia, with heritability ranging from 30 to 85% for muscle strength and 45–90% for muscle mass. Sarcopenia has been the subject of increasing genetic research over the past decade. This review is designed to comprehensively summarize the most important and representative molecular genetic studies designed to identify genetic factors associated with sarcopenia. We have methodically reviewed whole-genome linkage studies in humans, quantitative trait loci mapping in animal models, candidate gene association studies, newly reported genome-wide association studies, DNA microarrays and microRNA studies of sarcopenia or related skeletal muscle phenotypes. The major results of each study are tabulated for easy comparison and reference. The findings of representative studies are discussed with respect to their influence on our present understanding of the genetics of sarcopenia. This is a comprehensive review of molecular genetic studies of gene identification for sarcopenia, and an overarching theme for this review is that the currently accumulating results are tentative and occasionally inconsistent and should be interpreted with caution pending further investigation. Consequently, this overview should enhance recognition of the need to validate/replicate the genetic variants underlying sarcopenia in large human cohorts and animal. We believe that further progress in understanding the genetic etiology of sarcopenia will provide valuable insights into important fundamental biological mechanisms underlying muscle physiology that will ultimately lead to improved ability to recognize individuals at risk for developing sarcopenia and our ability to treat this debilitating condition.



The study was partially supported by the Natural Science Foundation of China (NSFC) (30771222, 30900810), NSFC—Canadian Institutes of Health Research (CIHR) Joint Health Research Initiative Proposal (30811120436), NSFC/RGC Joint Research Scheme (30731160618), Shanghai Leading Academic Discipline Project (S30501), a grant from Ministry of Education to ShangHai University of Science and Technology and startup fund from the University of Shanghai for Science and Technology. HWD was partially supported by grants from NIH (R01 AR050496-01, R21 AG027110, R01 AG026564, P50 AR055081 and R01 AR057049).

Conflict of interest

We declare that we have no conflict of interest.


  1. Abney M, McPeek MS, Ober C (2001) Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 68:1302–1307PubMedCrossRefGoogle Scholar
  2. Allen DL, Loh AS (2011) Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Physiol Cell Physiol 300:C124–C137PubMedCrossRefGoogle Scholar
  3. Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34:5863–5871PubMedCrossRefGoogle Scholar
  4. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12:2076–2081PubMedCrossRefGoogle Scholar
  5. Arking DE, Fallin DM, Fried LP, Li T, Beamer BA, Xue QL, Chakravarti A, Walston J (2006) Variation in the ciliary neurotrophic factor gene and muscle strength in older Caucasian women. J Am Geriatr Soc 54:823–826PubMedCrossRefGoogle Scholar
  6. Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(Suppl):197–218Google Scholar
  7. Barr R, Macdonald H, Stewart A, McGuigan F, Rogers A, Eastell R, Felsenberg D, Glüer C, Roux C, Reid DM (2010) Association between vitamin D receptor gene polymorphisms, falls, balance and muscle power: results from two independent studies (APOSS and OPUS). Osteoporos Int 21:457–466PubMedCrossRefGoogle Scholar
  8. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedGoogle Scholar
  9. Baumgartner RN, Waters DL, Gallagher D (1999) Predictors of skeletal musclemass in elderly men and women. Mech Ageing Dev 107:123–136PubMedCrossRefGoogle Scholar
  10. Borecki IB, Higgins M, Schreiner PJ, Arnett DK, Mayer-Davis E, Hunt SC, Province MA (1998) Evidence for multiple determinants of the body mass index: the National Heart, Lung, and Blood Institute Family Heart Study. Obes Res 6:107–114PubMedGoogle Scholar
  11. Bortoli S, Renault V, Eveno E, Auffray C, Butler-Browne G, Pietu G (2003) Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene 321:145–154PubMedCrossRefGoogle Scholar
  12. Bustamante-Ara N, Santiago C, Verde Z, Yvert T, Gómez-Gallego F, Rodríguez-Romo G, González-Gil P, Serra-Rexach JA, Ruiz JR, Lucia A (2010) ACE and ACTN3 genes and muscle phenotypes in nonagenarians. Int J Sports Med 31:221–224PubMedCrossRefGoogle Scholar
  13. Cardinali B, Castellani L, Fasanaro P, Basso A, Alema S, Martelli F, Falcone G (2009) Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4:e7607PubMedCrossRefGoogle Scholar
  14. Caretti G, Di PM, Micales B, Lyons GE, Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18:2627–2638PubMedCrossRefGoogle Scholar
  15. Carmelli D, Reed T (2000) Stability and change in genetic and environmental influences on hand-grip strength in older male twins. J Appl Physiol 89:1879–1883PubMedGoogle Scholar
  16. Caroni P, Schneider C, Kiefer MC, Zapf J (1994) Role of muscle insulin-like growth factors in nerve sprouting: suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J Cell Biol 125:893–902PubMedCrossRefGoogle Scholar
  17. Chagnon YC, Chung WK, Perusse L, Chagnon M, Leibel RL, Bouchard C (1999) Linkages and associations between the leptin receptor (LEPR) gene and human body composition in the Quebec Family Study. Int J Obes Relat Metab Disord 23:278–286PubMedCrossRefGoogle Scholar
  18. Chagnon YC, Borecki IB, Perusse L, Roy S, Lacaille M, Chagnon M, Ho-Kim MA, Rice T, Province MA, Rao DC, Bouchard C (2000) Genome-wide search for genes related to the fat-free body mass in the Quebec Family Study. Metabolism 49:203–207PubMedCrossRefGoogle Scholar
  19. Chagnon YC, Rice T, Pérusse L, Borecki IB, Ho-Kim MA, Lacaille M, Paré C, Bouchard L, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2001) HERITAGE Family Study genomic scan for genes affecting body composition before and after training in Caucasians from HERITAGE. J Appl Physiol 90:1777–1787PubMedGoogle Scholar
  20. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SHM (2008) ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc 40:677–683PubMedCrossRefGoogle Scholar
  21. Chen CZ, Lodish HF (2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 17:155–165PubMedCrossRefGoogle Scholar
  22. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233PubMedCrossRefGoogle Scholar
  23. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoffman EP (2005) ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol 99:154–163PubMedCrossRefGoogle Scholar
  24. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818PubMedCrossRefGoogle Scholar
  25. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301PubMedCrossRefGoogle Scholar
  26. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526 Pt 1:203–210Google Scholar
  27. Corsi AM, Ferrucci L, Gozzini A, Tanini A, Brandi ML (2002) Myostatin polymorphisms and age-related sarcopenia in the Italian population. J Am Geriatr Soc 50:1463PubMedCrossRefGoogle Scholar
  28. Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 106:13383–13387PubMedCrossRefGoogle Scholar
  29. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) European Working Group on Sarcopenia in Older People Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423PubMedCrossRefGoogle Scholar
  30. Danser AHJ, Schalekamp MADH, Bax WA, Vandenbrink AM, Saxena PR, Riegger GAJ, Schunkert H (1995) Angiotensin-converting enzyme in the human heart—effect of the deletion insertion polymorphism. Circulation 92:1387–1388PubMedGoogle Scholar
  31. De Mars G, Windelinckx A, Beunen G, Delecluse C, Lefevre J, Thomis MAI (2007) Polymorphisms in the CNTF and CNTF receptor genes are associated with muscle strength in men and women. J Appl Physiol 102:1824–1831PubMedCrossRefGoogle Scholar
  32. De Mars G, Windelinckx A, Huygens W, Peeters MW, Beunen GP, Aerssens J, Vlietinck R, Thomis MA (2008a) Genome-wide linkage scan for maximum and length-dependent knee muscle strength in young men: significant evidence for linkage at chromosome 14q24.3. J Med Genet 45:275–283PubMedCrossRefGoogle Scholar
  33. De Mars G, Windelinckx A, Huygens W, Peeters MW, Beunen GP, Aerssens J, Vlietinck R, Thomis MA (2008b) Genome-wide linkage scan for contraction velocity characteristics of knee musculature in the Leuven Genes for Muscular Strength Study. Physiol Genomics 35:36–44PubMedCrossRefGoogle Scholar
  34. Dedoussis GVZ, Manios Y, Choumerianou DM, Yiannakouris N, Panagiotakos DB, Skenderi K, Zampelas A (2004) The IL-6 gene G-174C polymorphism related to health indices in Greek primary school children. Obes Res 12:1037–1041PubMedCrossRefGoogle Scholar
  35. Degens H (1998) Age-related changes in the microcirculation of skeletal muscle. Adv Exp Med Biol 454:343–348PubMedCrossRefGoogle Scholar
  36. Delbono O, O’Rourke KS, Ettinger WH (1995) Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. J Membr Biol 148:211–222PubMedGoogle Scholar
  37. Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF (2007) Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci 62:206–212PubMedCrossRefGoogle Scholar
  38. Delmonico MJ, Zmuda JM, Taylor BC, Cauley JA, Harris TB, Manini TM, Schwartz A, Li R, Roth SM, Hurley BF, Bauer DC, Ferrell RE, Newman A (2008) Association of the ACTN3 genotype and physical functioning with age in older adults. J Gerontol A Biol Sci Med Sci 63:1227–1234PubMedCrossRefGoogle Scholar
  39. Deng HW, Lai DB, Conway T, Li J, Xu FH, Davies KM, Recker RR (2001) Characterization of genetic and lifestyle factors for determining variation in body mass index, fat mass, percentage of fat mass, and lean mass. J Clin Densitom 4:353–361PubMedCrossRefGoogle Scholar
  40. Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH, Liu PY, Liu YJ, Recker RR, Deng HW (2007) Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res 22:808–816PubMedCrossRefGoogle Scholar
  41. Dennis RA, Przybyla B, Gurley C, Kortebein PM, Simpson P, Sullivan DH, Peterson CA (2008) Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics 32:393–400PubMedGoogle Scholar
  42. Dirks AJ, Leeuwenburgh C (2005) The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 35:473–483PubMedCrossRefGoogle Scholar
  43. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB (2008) Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab 295:E1333–E1340PubMedCrossRefGoogle Scholar
  44. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144PubMedCrossRefGoogle Scholar
  45. Evans W (1997) Functional and metabolic consequences of sarcopenia. J Nutr 127:998S–1003SPubMedGoogle Scholar
  46. Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91:1123S–1127SPubMedCrossRefGoogle Scholar
  47. Eynon N, Duarte JA, Oliveira J, Sagiv M, Yamin C, Meckel Y, Sagiv M, Goldhammer E (2009) ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med 30:695–698PubMedCrossRefGoogle Scholar
  48. Fairbrother UL, Tanko LB, Walley AJ, Christiansen C, Froguel P, Blakemore AIF (2007) Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J Bone Miner Res 22:544–550PubMedCrossRefGoogle Scholar
  49. Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF (1999) Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 62:203–207PubMedCrossRefGoogle Scholar
  50. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85:575–579PubMedCrossRefGoogle Scholar
  51. Frederiksen H, Gaist D, Petersen HC, Hjelmborg J, McGue M, Vaupel JW, Christensen K (2002) Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning. Genet Epidemiol 23:110–122PubMedCrossRefGoogle Scholar
  52. Frederiksen H, Bathum L, Worm C, Christensen K, Puggaard L (2003) ACE genotype and physical training effects: a randomized study among elderly Danes. Aging Clin Exp Res 15:284–291PubMedGoogle Scholar
  53. Galvao DA, Taaffe DR, Spry N, Joseph D, Turner D, Newton RU (2008) Reduced muscle strength and functional performance in men with prostate cancer undergoing androgen suppression: a comprehensive cross-sectional investigation. Prostate Cancer Prostatic Dis 12:198–203PubMedCrossRefGoogle Scholar
  54. Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J (1997) Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res 12:2082–2088PubMedCrossRefGoogle Scholar
  55. Geusens P, Vandevyver C, Stinissen P, Vanhoof J, Raus J, Michiels L (2001) Type I alfa 1 collagen gene polymorphism is associated with bone density, muscle strength and susceptibility for fractures in elderly women. J Bone Miner Res 16:S472Google Scholar
  56. Giaccaglia V, Nicklas B, Kritchevsky S, Mychaleckyz J, Messier S, Bleecker E, Pahor M (2008) Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. Int J Sports Med 29:40–44PubMedCrossRefGoogle Scholar
  57. Giles JT, Post W, Blumenthal RS, Bathon JM (2006) Therapy insight: managing cardiovascular risk in patients with rheumatoid arthritis. Nat Clin Pract Rheumatol 2:320–329PubMedCrossRefGoogle Scholar
  58. Gillette-Guyonnet S, Nourhashemi F, Andrieu S, Cantet C, Albarede JL, Vellas B, Grandjean H (2003) Body composition in French women 75+ years of age: the EPIDOS study. Mech Ageing Dev 124:311–316PubMedCrossRefGoogle Scholar
  59. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC (2005) Identification of a molecular signature of sarcopenia. Physiol Genomics 21:253–263PubMedCrossRefGoogle Scholar
  60. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984PubMedCrossRefGoogle Scholar
  61. González-Freire M, Rodríguez-Romo G, Santiago C, Bustamante-Ara N, Yvert T, Gómez-Gallego F, Serra Rexach JA, Ruiz JR, Lucia A (2010) The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age (Dordr) 32:405–409CrossRefGoogle Scholar
  62. Gordon SE, Davis BS, Carlson CJ, Booth FW (2001) ANG II is required for optimal overload-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metabol 280:E150–E159Google Scholar
  63. Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Mallmin H, Kindmark A (2004) Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol 150:323–328PubMedCrossRefGoogle Scholar
  64. Grundberg E, Ribom EL, Brandstrom H, Ljunggren O, Mallmin H, Kindmark A (2005) A TA-repeat polymorphism in the gene for the estrogen receptor alpha does not correlate with muscle strength or body composition in young adult Swedish women. Maturitas 50:153–160PubMedCrossRefGoogle Scholar
  65. Guadalupe-Grau A, Rodríguez-González FG, Dorado C, Olmedillas H, Fuentes T, Pérez-Gómez J, Delgado-Guerra S, Vicente-Rodríguez G, Ara I, Guerra B, Arteaga-Ortiz R, Calbet JA, Díaz-Chico BN (2010) Androgen receptor gene polymorphisms lean mass and performance in young men. Br J Sports Med (in press)Google Scholar
  66. Hand BD, Kostek MC, Ferrell RE, Delmonico MJ, Douglass LW, Roth SM, Hagberg JM, Hurley BF (2007) Influence of promoter region variants of insulin-like growth factor pathway genes on the strength-training response of muscle phenotypes in older adults. J Appl Physiol 103:1678–1687PubMedCrossRefGoogle Scholar
  67. Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34:355–361PubMedCrossRefGoogle Scholar
  68. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A, Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H, Hirschhorn JN, Laird NM, Lenburg ME, Lange C, Christman MF (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283PubMedCrossRefGoogle Scholar
  69. Hetzel L, Smith A (2001) The 65 years and over population: 2000 (Census 2000 Brief, C2KBR/01-10). Retrieved September 3, 2002, from
  70. Hopkinson NS, Nickol AH, Payne J, Hawe E, Man W, Moxham J, Montgomery H, Polkey MI (2004) ACE gene and strength in chronic obstructive pulmonary disease. Am J Resp Crit Care Med 170:395–399PubMedCrossRefGoogle Scholar
  71. Hopkinson NS, Li KW, Kehoe A, Humphries SE, Roughton M, Moxham J, Montgomery H, Polkey MI (2008) Vitamin D receptor genotypes influence quadriceps strength in chronic obstructive pulmonary disease. Am J Clin Nutr 87:385–390PubMedGoogle Scholar
  72. Houweling PJ, North KN (2009) Sarcomeric α-actinins and their role in human muscle disease. Future Neurol 4:731–743CrossRefGoogle Scholar
  73. Hsu FC, Lenchik L, Nicklas BJ, Lohman K, Register TC, Mychaleckyj J, Langefeld CD, Freedman BI, Bowden DW, Carr JJ (2005) Heritability of body composition measured by DXA in the diabetes heart study. Obes Res 13:312–319PubMedCrossRefGoogle Scholar
  74. Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen R, Vlietinck RF, Beunen G (2004a) Linkage of myostatin pathway genes with knee strength in humans. Physiol Genomics 17:264–270PubMedCrossRefGoogle Scholar
  75. Huygens W, Thomis MA, Peeters MW, Aerssens J, Janssen RG, Vlietinck RF, Beunen G (2004b) A quantitative trait locus on 13q14.2 for trunk strength. Twin Res 7:603–606PubMedCrossRefGoogle Scholar
  76. Huygens W, Thomis MA, Peeters MW, Vlietinck RF, Beunen GP (2004c) Determinants and upper-limit heritabilities of skeletal muscle mass and strength. Can J Appl Physiol 29:186–200PubMedCrossRefGoogle Scholar
  77. Huygens W, Thomis MA, Peeters MW, Aerssens J, Vlietinck R, Beunen GP (2005) Quantitative trait loci for human muscle strength: linkage analysis of myostatin pathway genes. Physiol Genomics 22:390–397PubMedCrossRefGoogle Scholar
  78. Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57:M772–M777PubMedCrossRefGoogle Scholar
  79. Ishigai Y, Mori T, Ikeda T, Fukuzawa A, Shibano T (1997) Role of bradykinin-NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 273:H2659–H2663Google Scholar
  80. Janssen I (2006) Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc 54:56–62PubMedCrossRefGoogle Scholar
  81. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85PubMedCrossRefGoogle Scholar
  82. Jones A, Woods DR (2003) Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 35:855–866PubMedCrossRefGoogle Scholar
  83. Jozsi AC, Dupont-Versteegden EE, Taylor-Jones JM, Evans WJ, Trappe TA, Campbell WW, Peterson CA (2000) Aged human muscle demonstrates an altered gene expression profile consistent with an impaired response to exercise. Mech Ageing Dev 120:45–56PubMedCrossRefGoogle Scholar
  84. Karasik D, Kiel DP (2008) Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res 23:788–802PubMedCrossRefGoogle Scholar
  85. Karasik D, Zhou Y, Cupples LA, Hannan MT, Kiel DP, Demissie S (2009) Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J Bone Miner Res 24:710–718PubMedCrossRefGoogle Scholar
  86. Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98:5093–5098PubMedCrossRefGoogle Scholar
  87. Kenny AM, Mcgee D, Joseph C, Covault J, Abreu C, Raisz LG (2005) Lack of association between androgen receptor polymorphisms and bone mineral density or physical function in older men. Endocr Res 31:285–293PubMedCrossRefGoogle Scholar
  88. Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, Shen W, Freda PU, Heymsfield SB (2004) Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol 97:655–660PubMedCrossRefGoogle Scholar
  89. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006a) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687PubMedCrossRefGoogle Scholar
  90. Kim J, Shen W, Gallagher D, Jones A Jr, Wang Z, Wang J, Heshka S, Heymsfield SB (2006b) Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents. Am J Clin Nutr 84:1014–1020PubMedGoogle Scholar
  91. Kostek MC, Delmonico MJ, Reichel JB, Roth SM, Douglass L, Ferrell RE, Hurley BF (2005) Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol 98:2147–2154PubMedCrossRefGoogle Scholar
  92. Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Price TB, Seip RL, Thompson PD, Devaney JM, Gordish-Dressman H, Hoffman EP, Pescatello LS (2009) Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc 41:1063–1071PubMedCrossRefGoogle Scholar
  93. Kostek M, Hubal MJ, Pescatello LS (2011) The role of genetic variation in muscle strength. Am J Lifestyle Med 5:156–170Google Scholar
  94. Kritchevsky SB, Nicklas BJ, Visser M, Simonsick EM, Newman AB, Harris TB, Lange EM, Penninx BW, Goodpaster BH, Satterfield S, Colbert LH, Rubin SM, Pahor M (2005) Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA 294:691–698PubMedCrossRefGoogle Scholar
  95. Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y (2009) Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 378:259–263PubMedCrossRefGoogle Scholar
  96. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  97. Lapauw B, Goemaere S, Crabbe P, Kaufman JM, Ruige JB (2007) Is the effect of testosterone on body composition modulated by the androgen receptor gene CAG repeat polymorphism in elderly men? Eur J Endocrinol 156:395–401PubMedCrossRefGoogle Scholar
  98. Larsson L, Li X, Teresi A, Salviati G (1994) Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats. J Physiol 481(Pt 1):149–161PubMedGoogle Scholar
  99. Larsson O, Wahlestedt C, Timmons JA (2005) Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics 6:129PubMedCrossRefGoogle Scholar
  100. Lau EM, Lynn HS, Woo JW, Kwok TC, Melton LJ III (2005) Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci 60:213–216PubMedCrossRefGoogle Scholar
  101. Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Giacomini V, Corsi AM, Guralnik JM, Ferrucci L (2006) Axonal degeneration affects muscle density in older men and women. Neurobiol Aging 27:1145–1154PubMedCrossRefGoogle Scholar
  102. Lecomte E, Herbeth B, Nicaud V, Rakotovao R, Artur Y, Tiret L (1997) Segregation analysis of fat mass and fat-free mass with age- and sex-dependent effects: the Stanislas Family Study. Genet Epidemiol 14:51–62PubMedCrossRefGoogle Scholar
  103. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393PubMedCrossRefGoogle Scholar
  104. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Barker C, Ehrmantraut G, Holmstrom J (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci USA 102:18117–18122PubMedCrossRefGoogle Scholar
  105. Lee CE, McArdle A, Griffiths RD (2007) The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr 26:524–534PubMedCrossRefGoogle Scholar
  106. Leger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175BGoogle Scholar
  107. Lima RM, de Abreu BS, Gentil P, Lima Lins TC, Grattapaglia D, Pereira RW, de Oliveira RJ (2007) Lack of association between vitamin D receptor genotypes and haplotypes with fat-free mass in postmenopausal Brazilian women. J Gerontol A Biol Sci Med Sci 62(9):966–972CrossRefGoogle Scholar
  108. Lima RM, Leite TK, Pereira RW, Rabelo HT, Roth SM, Oliveira RJ (2011) ACE and ACTN3 Genotypes in older women: muscular phenotypes. Int J Sports Med 32:66–72Google Scholar
  109. Lionikas A, Blizard DA, Vandenbergh DJ, Glover MG, Stout JT, Vogler GP, McClearn GE, Larsson L (2003) Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genomics 16:141–152PubMedCrossRefGoogle Scholar
  110. Lionikas A, Blizard DA, Gerhard GS, Vandenbergh DJ, Stout JT, Vogler GP, McClearn GE, Larsson L (2005) Genetic determinants of weight of fast- and slow-twitch skeletal muscle in 500-day-old mice of the C57BL/6J and DBA/2J lineage. Physiol Genomics 21:184–192PubMedCrossRefGoogle Scholar
  111. Lionikas A, Blizard DA, Vandenbergh DJ, Stout JT, Vogler GP, McClearn GE, Larsson L (2006) Genetic determinants of weight of fast- and slow-twitch skeletal muscles in old mice. Mamm Genome 17:615–628PubMedCrossRefGoogle Scholar
  112. Liu PY, Li YM, Li MX, Malkin I, Qin YJ, Chen XD, Liu YJ, Deng HW (2004a) Lack of evidence for a major gene in the Mendelian transmission of BMI in Chinese. Obes Res 12:1967–1973PubMedCrossRefGoogle Scholar
  113. Liu YJ, Rocha-Sanchez SMS, Liu PY, Long JR, Lu Y, Elze L, Recker RR, Deng HW (2004b) Tests of linkage and/or association of the LEPR gene polymorphisms with obesity phenotypes in Caucasian nuclear families. Physiological Genomics 17:101–106PubMedCrossRefGoogle Scholar
  114. Liu DM, Metter EJ, Ferrucci L, Roth SM (2008a) TNF promoter polymorphisms associated with muscle phenotypes in humans. J Appl Physiol 105:859–867PubMedCrossRefGoogle Scholar
  115. Liu X, Zhao LJ, Liu YJ, Xiong DH, Recker RR, Deng HW (2008b) The MTHFR gene polymorphism is associated with lean body mass but not fat body mass. Hum Genet 123:189–196PubMedCrossRefGoogle Scholar
  116. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW (2009) Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet 84:418–423PubMedCrossRefGoogle Scholar
  117. Livshits G, Kato BS, Wilson SG, Spector TD (2007) Linkage of genes to total lean body mass in normal women. J Clin Endocrinol Metab 92:3171–3176PubMedCrossRefGoogle Scholar
  118. Lopez-Alarcon M, Hunter GR, Gower BA, Fernandez JR (2007) IGF-I polymorphism is associated with lean mass, exercise economy, and exercise performance among premenopausal women. Arch Med Res 38:56–63PubMedCrossRefGoogle Scholar
  119. Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6:233–244PubMedCrossRefGoogle Scholar
  120. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39:1261–1265PubMedCrossRefGoogle Scholar
  121. MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN (2008) An Actn3 knockout mouse provides mechanistic insights into the association between {alpha}-actinin-3 deficiency and human athletic performance. Hum Mol Genet 17:1076–1086PubMedCrossRefGoogle Scholar
  122. Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19:1498–1500PubMedGoogle Scholar
  123. Marvelle AF, Lange LA, Qin L, Adair LS, Mohlke KL (2008) Association of FTO with obesity-related traits in the Cebu Longitudinal Health and Nutrition Survey (CLHNS) cohort. Diabetes 57:1987–1991PubMedCrossRefGoogle Scholar
  124. Masinde GL, Li X, Gu W, Davidson H, Hamilton-Ulland M, Wergedal J, Mohan S, Baylink DJ (2002a) Quantitative trait loci (QTL) for lean body mass and body length in MRL/MPJ and SJL/J F(2) mice. Funct Integr Genomics 2:98–104PubMedCrossRefGoogle Scholar
  125. Masinde GL, Li X, Gu W, Hamilton-Ulland M, Mohan S, Baylink DJ (2002b) Quantitative trait loci that harbor genes regulating muscle size in (MRL/MPJ x SJL/J) F(2) mice. Funct Integr Genomics 2:120–125PubMedCrossRefGoogle Scholar
  126. Massidda M, Vona G, Calo CM (2009) Association between the ACTN3 R577X polymorphism and artistic gymnastic performance in Italy. Genet Test Mol Biomarkers 13:377–380PubMedCrossRefGoogle Scholar
  127. McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102:306–313PubMedCrossRefGoogle Scholar
  128. McCauley T, Mastana SS, Hossack J, Macdonald M, Folland JP (2009) Human angiotensin-converting enzyme I/D and alpha-actinin 3 R577X genotypes and muscle functional and contractile properties. Exp Physiol 94:81–89PubMedCrossRefGoogle Scholar
  129. McCauley T, Mastana SS, Folland JP (2010) ACE I/D and ACTN3 R/X polymorphisms and muscle function and muscularity of older Caucasian men. Eur J Appl Physiol 109:269–277PubMedCrossRefGoogle Scholar
  130. McPherron AC, Lawler AM (1997) Lee SJ: regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90PubMedCrossRefGoogle Scholar
  131. Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance exercise reverses aging in human skeletal muscle. PLoS One 2:e465PubMedCrossRefGoogle Scholar
  132. Melton LJ III, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriatr Soc 48:625–630PubMedGoogle Scholar
  133. Middelbos IS, Vester BM, Karr-Lilienthal LK, Schook LB, Swanson KS (2009) Age and diet affect gene expression profile in canine skeletal muscle. PLoS One 4:e4481PubMedCrossRefGoogle Scholar
  134. Mikkola TM, Sipilä S, Rantanen T, Sievänen H, Suominen H, Tiainen K, Kaprio J, Koskenvuo M, Kauppinen M, Heinonen A (2009) Muscle cross-sectional area and structural bone strength share genetic and environmental effects in older women. J Bone Miner Res 24:338–345PubMedCrossRefGoogle Scholar
  135. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Montgomery HE, Wilson RH, Pitsiladis YP (2006) The associations of ACE polymorphisms with physical, physiological and skill parameters in adolescents. Eur J Hum Genet 14:332–339PubMedCrossRefGoogle Scholar
  136. Murphy KT, Koopman R, Naim T, Leger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-months-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442PubMedCrossRefGoogle Scholar
  137. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, Fearon KC, Laviano A, Maggio M, Rossi Fanelli F, Schneider SM, Schols A, Sieber CC (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159PubMedCrossRefGoogle Scholar
  138. Naguibneva I, meyar-Zazoua M, Polesskaya A, it-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284PubMedCrossRefGoogle Scholar
  139. Nair KS (1995) Muscle protein turnover: methodological issues and the effect of aging. J Gerontol A Biol Sci Med Sci 50 Spec No:107–112Google Scholar
  140. Naya FJ, Olson E (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688PubMedCrossRefGoogle Scholar
  141. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609PubMedCrossRefGoogle Scholar
  142. Nielsen TL, Hagen C, Wraae K, Bathum L, Larsen R, Brixen K, Andersen M (2010) The impact of the CAG repeat polymorphism of the androgen receptor gene on muscle and adipose tissues in 20–29-year-old Danish men: Odense Androgen Study. Eur J Endocrinol 162:795–804PubMedCrossRefGoogle Scholar
  143. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von WF, Tesch PA (2009) Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol 106:959–965Google Scholar
  144. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21:353–354PubMedCrossRefGoogle Scholar
  145. Onder G, Capoluongo E, Danese P, Settanni S, Russo A, Concolino P, Bernabei R, Landi F (2008) Vitamin D receptor polymorphisms and falls among older adults living in the community: results from the ilSIRENTE study. J Bone Miner Res 23:1031–1036PubMedCrossRefGoogle Scholar
  146. Park SK, Prolla TA (2005) Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 66:205–212PubMedCrossRefGoogle Scholar
  147. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar
  148. Pattison JS, Folk LC, Madsen RW, Childs TE, Booth FW (2003) Transcriptional profiling identifies extensive downregulation of extracellular matrix gene expression in sarcopenic rat soleus muscle. Physiol Genomics 15:34–43PubMedGoogle Scholar
  149. Pescatello LS, Kostek MA, Gordish-Dressman H, Thompson PD, Seip RL, Price TB, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Devaney JM, Hoffman EP (2006) ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc 38:1074–1081PubMedCrossRefGoogle Scholar
  150. Philip B, Lu Z, Gao Y (2005) Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 17:365–375PubMedCrossRefGoogle Scholar
  151. Pistilli EE, Gordish-Dressman H, Seip RL, Devaney JM, Thompson PD, Price TB, Angelopoulos TJ, Clarkson PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Hoffman EP, Gordon PM (2007) Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women. Obesity (Silver Spring) 15:392–402CrossRefGoogle Scholar
  152. Potthoff MJ, Olson EN, Bassel-Duby R (2007) Skeletal muscle remodeling. Curr Opin Rheumatol 19:542–549PubMedCrossRefGoogle Scholar
  153. Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783PubMedCrossRefGoogle Scholar
  154. Prior SJ, Roth SM, Wang X, Kammerer C, Miljkovic-Gacic I, Bunker CH, Wheeler VW, Patrick AL, Zmuda JM (2007) Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage. J Appl Physiol 103:1121–1127PubMedCrossRefGoogle Scholar
  155. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150PubMedCrossRefGoogle Scholar
  156. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726PubMedCrossRefGoogle Scholar
  157. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ (2003) Attisano L: myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242PubMedCrossRefGoogle Scholar
  158. Reecy JM, Spurlock DM, Stahl CH (2006) Gene expression profiling: insights into skeletal muscle growth and development. J Anim Sci 84(Suppl):E150–E154PubMedGoogle Scholar
  159. Rice T, Borecki IB, Bouchard C, Rao DC (1993) Segregation analysis of fat mass and other body composition measures derived from underwater weighing. Am J Hum Genet 52:967–973PubMedGoogle Scholar
  160. Roberts SB (1995) Effects of aging on energy requirements and the control of food intake in men. J Gerontol A Biol Sci Med Sci 50 Spec No:101–106Google Scholar
  161. Rodríguez-Romo G, Ruiz JR, Santiago C, Fiuza-Luces C, González-Freire M, Gómez-Gallego F, Morán M, Lucia A (2010) Does the ACE I/D polymorphism, alone or in combination with the ACTN3 R577X polymorphism, influence muscle power phenotypes in young, non-athletic adults? Eur J Appl Physiol 110:1099–1106PubMedCrossRefGoogle Scholar
  162. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175:77–85PubMedCrossRefGoogle Scholar
  163. Roth SM, Schrager MA, Ferrell RE, Riechman SE, Metter EJ, Lynch NA, Lindle RS, Hurley BF (2001) CNTF genotype is associated with muscular strength and quality in humans across the adult age span. J Appl Physiol 90:1205–1210PubMedGoogle Scholar
  164. Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF, Rogers MA (2002) Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genomics 10:181–190PubMedGoogle Scholar
  165. Roth SM, Metter EJ, Lee MR, Hurley BF, Ferrell RE (2003a) C174T polymorphism in the CNTF receptor gene is associated with fat-free mass in men and women. J Appl Physiol 95:1425–1430PubMedGoogle Scholar
  166. Roth SM, Schrager MA, Lee MR, Metter EJ, Hurley BF, Ferrell RE (2003b) Interleukin-6 (IL6) genotype is associated with fat-free mass in men but not women. J Gerontol A Biol Sci Med Sci 58:B1085–B1088PubMedCrossRefGoogle Scholar
  167. Roth SM, Zmuda JM, Cauley JA, Shea PR, Ferrell RE (2004) Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J Gerontol A Biol Sci Med Sci 59:10–15PubMedCrossRefGoogle Scholar
  168. Roubenoff R (2000) Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci 904:553–557PubMedCrossRefGoogle Scholar
  169. Roubenoff R (2004) Sarcopenic obesity: the confluence of two epidemics. Obes Res 12:887–888PubMedCrossRefGoogle Scholar
  170. Roubenoff R, Heymsfield SB, Kehayias JJ, Cannon JG, Rosenberg IH (1997) Standardization of nomenclature of body composition in weight loss. Am J Clin Nutr 66:192–196PubMedGoogle Scholar
  171. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25PubMedCrossRefGoogle Scholar
  172. Salmen T, Heikkinen AM, Mahonen A, Kroger H, Komulainen M, Saarikoski S, Honkanen R, Partanen J, Maenpaa PH (2002) Relation of estrogen receptor-alpha gene polymorphism and hormone replacement therapy to fall risk and muscle strength in early postmenopausal women. Ann Med 34:64–72PubMedCrossRefGoogle Scholar
  173. San Juan AF, Gomez-Gallego F, Canete S, Santiago C, Perez M, Lucia A (2006) Does complete deficiency of muscle alpha actinin 3 alter functional capacity in elderly women? A preliminary report. Br J Sports Med 40:e1PubMedCrossRefGoogle Scholar
  174. Santiago C, Ruiz JR, Rodríguez-Romo G, Fiuza-Luces C, Yvert T, Gonzalez-Freire M, Gómez-Gallego F, Morán M, Lucia A (2011) The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS One 6:e16323Google Scholar
  175. Sayer AA, Syddall H, O’Dell SD, Chen XH, Briggs PJ, Briggs R, Day IN, Cooper C (2002) Polymorphism of the IGF2 gene, birth weight and grip strength in adult men. Age Ageing 31:468–470PubMedCrossRefGoogle Scholar
  176. Schrager MA, Roth SM, Ferrell RE, Metter EJ, Russek-Cohen E, Lynch NA, Lindle RS, Hurley BF (2004) Insulin-like growth factor-2 genotype, fat-free mass, and muscle performance across the adult life span. J Appl Physiol 97:2176–2183PubMedCrossRefGoogle Scholar
  177. Seibert MJ, Xue QL, Fried LP, Walston JD (2001) Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the Women’s Health and Aging Study II cohort. J Am Geriatr Soc 49:1093–1096PubMedCrossRefGoogle Scholar
  178. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13PubMedCrossRefGoogle Scholar
  179. Sermet-Gaudelus I, Souberbielle JC, Azhar I, Ruiz JC, Magnine P, Colomb V, Le BC, Folio D, Lenoir G (2003) Insulin-like growth factor I correlates with lean body mass in cystic fibrosis patients. Arch Dis Child 88:956–961PubMedCrossRefGoogle Scholar
  180. Siu PM, Pistilli EE, Alway SE (2008) Age-dependent increase in oxidative stress in gastrocnemius muscle with unloading. J Appl Physiol 105(6):1695–1705Google Scholar
  181. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, Guja C, Ionescu-Tirgoviste C, Widmer B, Dunger DB, Savage DA, Walker NM, Clayton DG, Todd JA (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMedCrossRefGoogle Scholar
  182. Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19:2343–2354PubMedCrossRefGoogle Scholar
  183. Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, Powell D, Hawley JA (2009) Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc 41:546–565PubMedGoogle Scholar
  184. Sun G, Gagnon J, Chagnon Y, Perusse L, Despres J, Leon A, Wilmore J, Skinner J, Borecki I, Rao D, Bouchard C (1999) Association and linkage between an insulin-like growth factor-1 gene polymorphism and fat free mass in the HERITAGE Family Study. Int J Obes 23:929–935CrossRefGoogle Scholar
  185. Szulc P, Beck TJ, Marchand F, Delmas PD (2005) Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res 20:721–729PubMedCrossRefGoogle Scholar
  186. Tan RS, Culberson JW (2003) An integrative review on current evidence of testosterone replacement therapy for the andropause. Maturitas 45:15–27PubMedCrossRefGoogle Scholar
  187. Teran-Garcia M, Rankinen T, Koza RA, Rao DC, Bouchard C (2005) Endurance training-induced changes in insulin sensitivity and gene expression. Am J Physiol Endocrinol Metab 288:E1168–E1178PubMedCrossRefGoogle Scholar
  188. Thomas DC, Haile RW, Duggan D (2005) Recent developments in genomewide association scans: a workshop summary and review. Am J Hum Genet 77:337–345PubMedCrossRefGoogle Scholar
  189. Thomas LB, Harrison AL, Stemple JC (2007) Aging thyroarytenoid and limb skeletal muscle: lessons in contrast. J Voice 22:430–450PubMedCrossRefGoogle Scholar
  190. Thomis MA, Beunen GP, Van Leemputte M, Maes HH, Blimkie CJ, Claessens AL, Marchal G, Willems E, Vlietinck RF (1998) Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 163:59–71PubMedCrossRefGoogle Scholar
  191. Thomis MA, Huygens W, Heuninckx S, Chagnon M, Maes HH, Claessens AL, Vlietinck R, Bouchard C, Beunen GP (2004) Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur J Appl Physiol 92:267–274PubMedCrossRefGoogle Scholar
  192. Tiainen K, Sipila S, Alen M, Heikkinen E, Kaprio J, Koskenvuo M, Tolvanen A, Pajala S, Rantanen T (2004) Heritability of maximal isometric muscle strength in older female twins. J Appl Physiol 96:173–180PubMedCrossRefGoogle Scholar
  193. Tiainen K, Sipila¨ S, Alen M, Heikkinen E, Kaprio J, Koskenvuo M, Tolvanen A, Pajala S, Rantanen T (2005) Shared genetic and environmental effects on strength and power in older female twins. Med Sci Sports Exerc 37:72–78PubMedCrossRefGoogle Scholar
  194. Tiainen KM, Perola M, Kovanen VM, Sipilä S, Tuononen KA, Rikalainen K, Kauppinen MA, Widen EI, Kaprio J, Rantanen T, Kujala UM (2008) Genetics of maximal walking speed and skeletal muscle characteristics in older women. Twin Res Hum Genet 11:321–334PubMedCrossRefGoogle Scholar
  195. Tiainen K, Sipilä S, Kauppinen M, Kaprio J, Rantanen T (2009) Genetic and environmental effects on isometric muscle strength and leg extensor power followed up for three years among older female twins. J Appl Physiol 106:1604–1610PubMedCrossRefGoogle Scholar
  196. Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C, Sundberg CJ (2005) Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 19:750–760PubMedCrossRefGoogle Scholar
  197. Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384:349–353PubMedCrossRefGoogle Scholar
  198. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270PubMedCrossRefGoogle Scholar
  199. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  200. Van Pottelbergh I, Goemaere S, Nuytinck L, De Paepe A, Kaufman JM (2001) Association of the type I collagen alpha1 Sp1 polymorphism, bone density and upper limb muscle strength in community-dwelling elderly men. Osteoporos Int 12:895–901PubMedCrossRefGoogle Scholar
  201. van Rossum EF, Voorhoeve PG, te Velde SJ, Koper JW, Delemarre-van de Waal HA, Kemper HC, Lamberts SW (2004) The ER22/23EK polymorphism in the glucocorticoid receptor gene is associated with a beneficial body composition and muscle strength in young adults. J Clin Endocrinol Metab 89:4004–4009PubMedCrossRefGoogle Scholar
  202. Vigano A, Trutschnigg B, Kilgour RD, Hamel N, Hornby L, Lucar E, Foulkes W, Tremblay ML, Morais JA (2009) Relationship between angiotensin-converting enzyme gene polymorphism and body composition, functional performance, and blood biomarkers in advanced cancer patients. Clin Cancer Res 15:2442–2447PubMedCrossRefGoogle Scholar
  203. Vincent B, De Bock K, Ramaekers M, Van den EE, Van Leemputte M, Hespel P, Thomis MA (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics 32:58–63PubMedCrossRefGoogle Scholar
  204. Visser M (2009) Towards a definition of sarcopenia–results from epidemiologic studies. Nutr Health Aging 13:713–716CrossRefGoogle Scholar
  205. von Wnuck LK, Keul P, Lucke S, Heusch G, Wohlschlaeger J, Baba HA, Levkau B (2006) Degraded collagen induces calpain-mediated apoptosis and destruction of the X-chromosome-linked inhibitor of apoptosis (xIAP) in human vascular smooth muscle cells. Cardiovasc Res 69:697–705CrossRefGoogle Scholar
  206. Wagner H, Thaller S, Dahse R, Sust M (2006) Biomechanical muscle properties and angiotensin-converting enzyme gene polymorphism: a model-based study. Eur J Appl Physiol 98:507–515PubMedCrossRefGoogle Scholar
  207. Walsh S, Zmuda JM, Cauley JA, Shea PR, Metter EJ, Hurley BF, Ferrell RE, Roth SM (2005) Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. J Appl Physiol 98:132–137PubMedCrossRefGoogle Scholar
  208. Walsh S, Metter EJ, Ferrucci L, Roth SM (2007) Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans. J Appl Physiol 102:2142–2148PubMedCrossRefGoogle Scholar
  209. Walsh S, Liu DM, Metter EJ, Ferrucci L, Roth SM (2008) ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol 105:1486–1491PubMedCrossRefGoogle Scholar
  210. Walsh S, Kelsey BK, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Seip RL, Bilbie S, Thompson PD, Hoffman EP, Price TB, Devaney JM, Pescatello LS (2009) CNTF 1357 G ->A polymorphism and the muscle strength response to resistance training. J Appl Physiol 107:1235–1240PubMedCrossRefGoogle Scholar
  211. Walston J, Arking DE, Fallin D, Li T, Beamer B, Xue Q, Ferrucci L, Fried LP, Chakravarti A (2005) IL-6 gene variation is not associated with increased serum levels of IL-6, muscle, weakness, or frailty in older women. Exp Gerontol 40:344–352PubMedCrossRefGoogle Scholar
  212. Wang P, Ma L, Zhao B, Wang H, Tan S, Feng L, Ma R (2003) Elite Chinese power athletes and CNTF (ciliary neurotrophic factor) genetic polymorphism. Med Sci Sports Exer 35Google Scholar
  213. Wang P, Ma LH, Wang HY, Zhang W, Tian Q, Cao DN, Zheng GX, Sun YL (2006) Association between polymorphisms of vitamin D receptor gene Apal, Bsml and Taql and muscular strength in young Chinese women. Int J Sports Med 27:182–186PubMedCrossRefGoogle Scholar
  214. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008a) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381PubMedCrossRefGoogle Scholar
  215. Wang XL, Deng FY, Tan LJ, Deng HY, Liu YZ, Papasian CJ, Recker RR, Deng HW (2008b) Bivariate whole genome linkage analyses for total body lean mass and BMD. J Bone Miner Res 23:447–452PubMedCrossRefGoogle Scholar
  216. Wang H, Sun H, Guttridge DC (2009a) microRNAs: novel components in a muscle gene regulatory network. Cell Cycle 8:1833–1837PubMedCrossRefGoogle Scholar
  217. Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, Shi X, Pan L, Rampersaud E, Shen H, Kim JD, Subramanya AR, Steinle NI, Parsa A, Ober CC, Welling PA, Chakravarti A, Weder AB, Cooper RS, Mitchell BD, Shuldiner AR, Chang YP (2009b) From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci USA 106:226–231PubMedCrossRefGoogle Scholar
  218. Welle S, Bhatt K, Thornton CA (2000) High-abundance mRNAs in human muscle: comparison between young and old. J Appl Physiol 89:297–304PubMedGoogle Scholar
  219. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14:149–159PubMedGoogle Scholar
  220. Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA (2004) Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol 39:369–377PubMedCrossRefGoogle Scholar
  221. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O’Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300:965–971PubMedCrossRefGoogle Scholar
  222. Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE (2005) Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc 37:944–948PubMedGoogle Scholar
  223. Windelinckx A, De Mars G, Beunen G, Aerssens J, Delecluse C, Lefevre J, Thomis MA (2007) Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women. Osteoporos Int 18:1235–1242PubMedCrossRefGoogle Scholar
  224. Windelinckx A, De Mars G, Huygens W, Peeters MW, Vincent B, Wijmenga C, Lambrechts D, Delecluse C, Roth SM, Metter EJ, Ferrucci L, Aerssens J, Vlietinck R, Beunen GP, Thomis MA (2011) Comprehensive fine mapping of chr12q12–14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene. Eur J Hum Genet 19:208–215PubMedCrossRefGoogle Scholar
  225. Wittwer M, Billeter R, Hoppeler H, Fluck M (2004) Regulatory gene expression in skeletal muscle of highly endurance-trained humans. Acta Physiol Scand 180:217–227PubMedCrossRefGoogle Scholar
  226. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843PubMedCrossRefGoogle Scholar
  227. Woods D, Onambele G, Woledge R, Skelton D, Bruce S, Humphries SE, Montgomery H (2001) Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J Clin Endocrinol Metab 86:2200–2204PubMedCrossRefGoogle Scholar
  228. Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L, Sha BY, Tang ZH, Pan F, Yang TL, Chen XD, Lei SF, Yerges LM, Zhu XZ, Wheeler VW, Patrick AL, Bunker CH, Guo Y, Yan H, Pei YF, Zhang YP, Levy S, Papasian CJ, Xiao P, Lundberg YW, Recker RR, Liu YZ, Liu YJ, Zmuda JM, Deng HW (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398PubMedCrossRefGoogle Scholar
  229. Brazilian women J Gerontol A Biol Sci Med Sci 62:966–972Google Scholar
  230. Yamamoto M, Kuroiwa A (2003) Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ 45:485–498PubMedCrossRefGoogle Scholar
  231. Yamin C, Amir O, Sagiv M, Attias E, Meckel Y, Eynon N, Sagiv M, Amir RE (2007) ACE ID genotype affects blood creatine kinase response to eccentric exercise. J Appl Physiol 103:2057–2061PubMedCrossRefGoogle Scholar
  232. Yang N, Garton F, North K (2009) Alpha-actinin-3 and performance. Med Sport Sci 54:88–101PubMedCrossRefGoogle Scholar
  233. Yoshihara A, Tobina T, Yamaga T, Ayabe M, Yoshitake Y, Kimura Y, Shimada M, Nishimuta M, Nakagawa N, Ohashi M, Hanada N, Tanaka H, Kiyonaga A, Miyazaki H (2009) Physical function is weakly associated with angiotensin-converting enzyme gene I/D polymorphism in elderly Japanese subjects. Gerontology 55:387–392PubMedCrossRefGoogle Scholar
  234. Yoshioka M, Tanaka H, Shono N, Snyder EE, Shindo M, St-Amand J (2003) Serial analysis of gene expression in the skeletal muscle of endurance athletes compared to sedentary men. FASEB J 17:1812–1819PubMedCrossRefGoogle Scholar
  235. Yoshioka M, Tanaka H, Shono N, Shindo M, St-Amand J (2007) Gene expression profile of sprinter’s muscle. Int J Sports Med 28:1053–1058PubMedCrossRefGoogle Scholar
  236. Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2:e115PubMedCrossRefGoogle Scholar
  237. Zang H, Davis SR (2008) Androgen replacement therapy in androgen-deficient women with hypopituitarism. Drugs 68:2085–2093PubMedCrossRefGoogle Scholar
  238. Zempo H, Tanabe K, Murakami H, Iemitsu M, Maeda S, Kuno S (2010) ACTN3 polymorphism affects thigh muscle area. Int J Sports Med 31:138–142PubMedCrossRefGoogle Scholar
  239. Zhai G, Stankovich J, Ding C, Scott F, Cicuttini F, Jones G (2004) The genetic contribution to muscle strength, knee pain, cartilage volume, bone size, and radiographic osteoarthritis: a sibpair study. Arthritis Rheum 50:805–810PubMedCrossRefGoogle Scholar
  240. Zhai G, Ding C, Stankovich J, Cicuttini F, Jones G (2005) The genetic contribution to longitudinal changes in knee structure and muscle strength: a sibpair study. Arthritis Rheum 52:2830–2834PubMedCrossRefGoogle Scholar
  241. Zhao LJ, Xiao P, Liu YJ, Xiong DH, Shen H, Recker RR, Deng HW (2007) A genome-wide linkage scan for quantitative trait loci underlying obesity related phenotypes in 434 Caucasian families. Hum Genet 121:145–148PubMedCrossRefGoogle Scholar
  242. Zitzmann M, Gromoll J, von Eckardstein A, Nieschlag E (2003) The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men. Diabetologia 46:31–39PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Li-Jun Tan
    • 1
    • 2
  • Shan-Lin Liu
    • 1
  • Shu-Feng Lei
    • 1
  • Christopher J. Papasian
    • 3
  • Hong-Wen Deng
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life SciencesHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical MedicineTulane UniversityNew OrleansUSA
  3. 3.Department of Basic Medical Science, School of MedicineUniversity of Missouri-Kansas CityKansas CityUSA
  4. 4.Center of Systematic Biomedical ResearchShanghai University of Science and TechnologyShanghaiChina
  5. 5.College of Life Sciences and TechnologyBeijing Jiao Tong UniversityBeijingChina

Personalised recommendations