Advertisement

Human Genetics

, Volume 130, Issue 6, pp 777–787 | Cite as

The role of the TCF4 gene in the phenotype of individuals with 18q segmental deletions

  • Minire Hasi
  • Bridgette Soileau
  • Courtney Sebold
  • Annice Hill
  • Daniel E. Hale
  • Louise O’Donnell
  • Jannine D. CodyEmail author
Original Investigation

Abstract

The goal of this study is to define the effects of TCF4 hemizygosity in the context of a larger segmental deletion of chromosome 18q. Our cohort included 37 individuals with deletions of 18q. Twenty-seven had deletions including TCF4 (TCF4 +/); nine had deletions that did not include TCF4 (TCF4 +/+); and one individual had a microdeletion that included only the TCF4 gene. We compared phenotypic data from the participants’ medical records, survey responses, and in-person evaluations. Features unique to the TCF4 +/ individuals included abnormal corpus callosum, short neck, small penis, accessory and wide-spaced nipples, broad or clubbed fingers, and sacral dimple. The developmental data revealed that TCF4 +/+ individuals were only moderately developmentally delayed while TCF4 +/ individuals failed to reach developmental milestones beyond those typically acquired by 12 months of age. TCF4 hemizygosity also conferred an increased risk of early death principally due to aspiration-related complications. Hemizygosity for TCF4 confers a significant impact primarily with regard to cognitive and motor development, resulting in a very different prognosis for individuals hemizygous for TCF4 when compared to individuals hemizygous for other regions of distal 18q.

Keywords

Autism Spectrum Disorder Myelin Basic Protein Intellectual Disability Terminal Deletion Cognitive Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to first thank the families that participated in this study for their willingness to share their knowledge and for answering numerous questionnaires and emails. This work was funded by the MacDonald family, The Chromosome 18 Registry & Research Society, the Institute for the Integration of Medicine and Science (UL 1RR025767; National Center for Research Resources) and CHRISTUS Santa Rosa Children’s Hospital.

References

  1. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, Colleaux L (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt–Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993PubMedCrossRefGoogle Scholar
  2. Andrieux J, Lepretre F, Cuisset AG, Delobel B, Manouvrier-Hanu S, Holder-Espinasee M (2008) Deletion 18q21.2q21.32 involving TCF4 in a boy diagnosed by CGH-array. Eur J Med Genet 51:172–177PubMedCrossRefGoogle Scholar
  3. Bayley N (2006) Bayley scales of infant and toddler development, 3rd edn. Harcourt Assessment Inc., San AntonioGoogle Scholar
  4. Brockschmidt A, Todt U, Ryu S, Hoischen A, Landwehr C, Birnbaum S, Frenck W, Radlwimmer B, Lichter P, Engels H, Driever W, Kubisch C, Weber RG (2007) Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum Mol Genet 16(12):1488–1494PubMedCrossRefGoogle Scholar
  5. Cody JD, Heard PL, Crandall AC, Carter EM, Li J, Hardies LJ, Lancaster J, Perry B, Stratton RF, Sebold C, Schaub RL, Soileau B, Hill A, Hasi M, Fox PT, Hale DE (2009) Narrowing critical regions and determining penetrance for selected 18q− phenotypes. Am J Med Genet 149A(7):1421–1430PubMedCrossRefGoogle Scholar
  6. de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N, Soufflet C, Picard C, Durandy A, Dobbie A, Heron D, Isidor B, Motte J, Newburry-Ecob R, Pasquier L, Tardieu M, Viot G, Jaubert F, Munnich A, Colleaux L, Vekemans M, Etchevers H, Lyonnet S, Amiel J (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat 30:669–676PubMedCrossRefGoogle Scholar
  7. Elliot CD (2007) Differential ability scales, 2nd edn. Harcourt Assessment Inc., San AntonioGoogle Scholar
  8. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, Vliet WA, Faas BHW, Knoers NV, Kahn W, Kahn RS, Edelman L, Davis KL, Silverman JM, Brunner HG, Kessel AG, Wijmenga C, Ophoff RA, Veltman JA (2008) CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 13:261–266PubMedCrossRefGoogle Scholar
  9. Gilliam JE (1995) Gilliam autism rating scale, 1st edn. Pro-Ed Inc., AustinGoogle Scholar
  10. Gilliam JE (2006) Gilliam autism rating scale, 2nd edn. Pro-Ed Inc., AustinGoogle Scholar
  11. Giurgea I, Missirian Ch, Cacciagli P, Whalen S, Fredriksen T, Gaillon T, Rankin J, Mathieu-Dramard M, Morin G, Martin-Coignard D, Dubourg C, Chabrol B, Arfi J, Giuliano F, Lambert JC, Philip N, Sarda P, Villard L, Goossens M, Moncla A (2008) TCF4 deletions in Pitt–Hopkins syndrome. Hum Mutat 1026(29):E242–E251CrossRefGoogle Scholar
  12. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134:3771–3780PubMedCrossRefGoogle Scholar
  13. Heard PL, Carter EM, Crandall AC, Sebold C, Hale DE, Cody JD (2009) High resolution genomic analysis of 18q− using oligo-microarray comparative genomic hybridization (aCGH). Am J Med Genet Part A 149A(7):1431–1437PubMedCrossRefGoogle Scholar
  14. Kalscheuer VM, Feenstra I, Van Ravenswaaij-Arts CMA, Smeets DFCM, Menzel C, Ullmann R, Musnate L, Ropers HH (2008) Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt–Hopkins syndrome. Am J Med Genet Part A 146A:2053–2059PubMedCrossRefGoogle Scholar
  15. Kirov G, Rujescu D, Ingason A, Collier DA, O’Donovan MC, Owen MJ (2009) Neurexin 1(NRXN1) deletions in schizophrenia. Schizophr Bull 35:851–854Google Scholar
  16. O’Donnell L, Soileau B, Heard P, Carter E, Sebold C, Gelfond J, Hale DE, Cody JD (2010) Genetic determinants of autism in individuals with deletions of 18q. Hum Genet 128:155–164PubMedCrossRefGoogle Scholar
  17. Peippo MM, Simola KO, Valanne LK, Larsen AT, Kahkonen M, Auranen MP, Ignatius J (2006) Pitt–Hopkins syndrome in two patients and further definition of the phenotype. Clin Dysmorphol 15:47–54PubMedCrossRefGoogle Scholar
  18. Pitt D, Hopkins I (1978) A syndrome of mental retardation, wide mouth and intermittent overbreathing. Aust Paediatr J 14:182–184PubMedGoogle Scholar
  19. Reynolds CR, Kamphaus RW (2004) Behavior assessment system for children, 2nd edn. AGS Publishing, Circle PinesGoogle Scholar
  20. Rietkerk T, Boks MPM, Sommer IEC, Jong DS, Kahn RS, Ophoff RA (2009) Network analysis of positional candidate genes of schizophrenia highlights myelin-related pathways. Mol Psychiatry 14:353–355PubMedCrossRefGoogle Scholar
  21. Rose MF, Een J, Ahmad KA, Chao HT, Klisch TJ, Flora A, Greer JJ, Zoghbi HY (2009) Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64:341–354PubMedCrossRefGoogle Scholar
  22. Rosenfeld JA, Leppig K, Ballif BC, Thiese H, Erdie-Lalena C, Bawle E, Sastry S, Spence E, Bandholz A, Surti U, Zonana J, Keller K, Meschino W, Bejjani BA, Torchia BS, Shaffer LG (2009) Genotype-phenotype analysis of TCF4 mutations causing Pitt–Hopkins syndrome shows increased seizure activity with missense mutations. Genet Med 11:797–805PubMedCrossRefGoogle Scholar
  23. Singh HA (1993) Mental retardation, macrostomia and hyperpnoea syndrome. J Paediatr Child Health 29:156–157PubMedCrossRefGoogle Scholar
  24. Sparrow SS, Cicchetti DV, Balla DA (2005) Vineland adaptive behavior scales, 2nd edn. AGS Publishing, Circle PinesGoogle Scholar
  25. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OPH, Mors O, Mortensen PB, Sigurdsson E, Gustaffson O, Nyegaard M, Tuulio-Henrikson A, Ingason A, Hansen T, Suvisari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Genetic Risk and Outcome in Psychosis (GROUP), Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747PubMedGoogle Scholar
  26. Taddeucci G, Bonuccelli A, Mantellassi I, Orsini A, Tarantino E (2010) Pitt-Hopkins syndrome: report of a case with a TCF4 gene mutation. Italian J Pediatr 36:12CrossRefGoogle Scholar
  27. Takano K, Lyons M, Moyes C, Jones J, Schwartz CE (2010) Two percent of patients suspected of having Angelman syndrome have TCF4 mutations. Clin Genet 78:282–288PubMedCrossRefGoogle Scholar
  28. Van Balkom ID, Quartel S, Hennekam RC (1998) Mental retardation, “coarse” face, and hyperbreathing: confirmation of the Pitt–Hopkins syndrome. Am J Med Genet 75:273–276PubMedCrossRefGoogle Scholar
  29. Wechsler D (1997) Wechsler adult intelligence scales, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  30. Zweier C, Peipoo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, Cabral A, GÖhring I, Devriendt K, Ravel de Th, Bijlsma EK, Hennekam RCM, Orrico A, Cohen M, Dreweke A, Reis A, NÜrnberg P, Rauch A A et al (2007) Haploinsufficiency of TCF4 causes mental retardation with intermittent hyperventilation (Pitt–Hopkins Syndrome). Am J Hum Genet 80:994–1001PubMedCrossRefGoogle Scholar
  31. Zweier C, Sticht H, Bijlsma EK, Clayton-Smith J, Bonnen SE, Fryer A, Greally MT, Hoffman L, Hollander NS, Jongmans M, Kant SG, King MD, Lynch SA, McKee S, Midro AT, Park SM, Ricotti V, Tarantino E, Wessels M (2008) Further delineation of Pitt-Hopkins syndrome: phenotypic and genotypic description of 16 novel patients. J Med Genet 45:738–744PubMedCrossRefGoogle Scholar
  32. Zweier C, Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL, Bijlsma EK, Oortveld MAW, Ekici A, Reis A, Schneck A, Rauch A (2009) CNTNAP2 and NRXN1 are mutated in Autosomal-Recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Med Genet 85:655–666Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Minire Hasi
    • 1
  • Bridgette Soileau
    • 1
  • Courtney Sebold
    • 1
  • Annice Hill
    • 1
  • Daniel E. Hale
    • 1
    • 2
  • Louise O’Donnell
    • 1
    • 3
  • Jannine D. Cody
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of PediatricsUT Health Science CenterSan AntonioUSA
  2. 2.CHRISTUS Santa Rosa Children’s HospitalSan AntonioUSA
  3. 3.Department of PsychiatryUT Health Science Center at San AntonioSan AntonioUSA
  4. 4.The Chromosome 18 Registry and Research SocietySan AntonioUSA

Personalised recommendations