Human Genetics

, Volume 130, Issue 2, pp 237–245 | Cite as

Genes that escape from X inactivation

  • Joel B. Berletch
  • Fan Yang
  • Jun Xu
  • Laura Carrel
  • Christine M. Disteche
Review Paper

Abstract

To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

References

  1. Abidi F, Holloway L, Moore CA, Weaver DD, Simensen RJ, Stevenson RE, Rogers RC et al (2009) Novel human pathological mutations. Gene symbol: JARID1C. Disease: mental retardation, X-linked. Hum Genet 125(3):345Google Scholar
  2. Adegbola A, Gao H, Sommer S, Browning M (2008) A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 146A(4):505–511. doi:10.1002/ajmg.a.32142 PubMedCrossRefGoogle Scholar
  3. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734. doi:10.1038/nature06145 PubMedCrossRefGoogle Scholar
  4. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, Kishimoto H et al (2009) SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell 16(4):507–516. doi:10.1016/j.devcel.2009.03.006 PubMedCrossRefGoogle Scholar
  5. Al Nadaf S, Waters PD, Koina E, Deakin JE, Jordan KS, Graves JA (2010) Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol 11 (12):R122. doi:10.1186/gb-2010-11-12-r122
  6. Anderson CL, Brown CJ (1999) Polymorphic X-chromosome inactivation of the human TIMP1 gene. Am J Hum Genet 65(3):699–708. doi:10.1086/302556 PubMedCrossRefGoogle Scholar
  7. Arnold AP (2009) Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J Neuroendocrinol 21(4):377–386. doi:10.1111/j.1365-2826.2009.01831.x PubMedCrossRefGoogle Scholar
  8. Arnold AP, Burgoyne PS (2004) Are XX and XY brain cells intrinsically different? Trends Endocrinol Metab 15(1):6–11. doi:S104327600300242X[pii] PubMedCrossRefGoogle Scholar
  9. Arnold AP, Chen X (2009) What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 30(1):1–9. doi:10.1016/j.yfrne.2008.11.001 PubMedCrossRefGoogle Scholar
  10. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97(12):6634–6639. doi:97/12/6634[pii] PubMedCrossRefGoogle Scholar
  11. Barakat TS, Gunhanlar N, Pardo CG, Achame EM, Ghazvini M, Boers R, Kenter A et al (2011) RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genet 7 (1):e1002001. doi:10.1371/journal.pgen.1002001
  12. Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11 (6):213. doi:10.1186/gb-2010-11-6-213 Google Scholar
  13. Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A (2011) Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction. doi:10.1530/REP-11-0006
  14. Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD (2002) Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30(1):73–76. doi:10.1038/ng787 PubMedCrossRefGoogle Scholar
  15. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44. doi:10.1038/349038a0 PubMedCrossRefGoogle Scholar
  16. Burgoyne PS, Thornhill AR, Boudrean SK, Darling SM, Bishop CE, Evans EP (1995) The genetic basis of XX–XY differences present before gonadal sex differentiation in the mouse. Philos Trans R Soc Lond B Biol Sci 350 (1333):253–260 (discussion 260–251). doi:10.1098/rstb.1995.0159 Google Scholar
  17. Carrel L, Willard HF (1999) Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci USA 96(13):7364–7369PubMedCrossRefGoogle Scholar
  18. Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434(7031):400–404PubMedCrossRefGoogle Scholar
  19. Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, Makova KD (2006) Genomic environment predicts expression patterns on the human inactive X chromosome. PLoS Genet 2 (9):e151. doi:10.1371/journal.pgen.0020151
  20. Carruth LL, Reisert I, Arnold AP (2002) Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci 5(10):933–934. doi:10.1038/nn922 PubMedCrossRefGoogle Scholar
  21. Changolkar LN, Pehrson JR (2006) macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26(12):4410–4420. doi:10.1128/MCB.02258-05 PubMedCrossRefGoogle Scholar
  22. Changolkar LN, Singh G, Cui K, Berletch JB, Zhao K, Disteche CM, Pehrson JR (2010) Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol Cell Biol 30(23):5473–5483. doi:10.1128/MCB.00518-10 PubMedCrossRefGoogle Scholar
  23. Chow J, Heard E (2009) X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 21(3):359–366. doi:10.1016/j.ceb.2009.04.012 PubMedCrossRefGoogle Scholar
  24. Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M et al (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141(6):956–969. doi:10.1016/j.cell.2010.04.042 PubMedCrossRefGoogle Scholar
  25. Ciavatta D, Kalantry S, Magnuson T, Smithies O (2006) A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc Natl Acad Sci USA 103(26):9958–9963. doi:10.1073/pnas.0603754103 PubMedCrossRefGoogle Scholar
  26. Clement-Jones M, Schiller S, Rao E, Blaschke RJ, Zuniga A, Zeller R, Robson SC et al (2000) The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum Mol Genet 9(5):695–702PubMedCrossRefGoogle Scholar
  27. Deakin JE, Chaumeil J, Hore TA, Marshall Graves JA (2009) Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res 17(5):671–685. doi:10.1007/s10577-009-9058-6 PubMedCrossRefGoogle Scholar
  28. Dewing P, Shi T, Horvath S, Vilain E (2003) Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res 118(1–2):82–90. doi:S0169328X03003395[pii] PubMedCrossRefGoogle Scholar
  29. Disteche CM (1999) Escapees on the X chromosome. Proc Natl Acad Sci USA 96(25):14180–14182PubMedCrossRefGoogle Scholar
  30. Disteche CM, Filippova GN, Tsuchiya KD (2002) Escape from X inactivation. Cytogenet Genome Res 99(1–4):36–43. doi:10.1159/000071572 PubMedCrossRefGoogle Scholar
  31. Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH (2004) The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 13(19):2333–2341. doi:10.1093/hmg/ddh240 PubMedCrossRefGoogle Scholar
  32. Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312(5780):1653–1655. doi:10.1126/science.1126316 PubMedCrossRefGoogle Scholar
  33. Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM, Zakian SM, Brockdorff N (1999) Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 8(2):195–204. doi:ddc032[pii] PubMedCrossRefGoogle Scholar
  34. Filippova GN, Cheng MK, Moore JM, Truong JP, Hu YJ, Nguyen DK, Tsuchiya KD et al (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8(1):31–42PubMedCrossRefGoogle Scholar
  35. Geschwind DH, Boone KB, Miller BL, Swerdloff RS (2000) Neurobehavioral phenotype of Klinefelter syndrome. Ment Retard Dev Disabil Res Rev 6(2):107–116. doi:10.1002/1098-2779(2000)6:2<107:AID-MRDD4>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  36. Goto Y, Kimura H (2009) Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37(22):7416–7428. doi:10.1093/nar/gkp860 PubMedCrossRefGoogle Scholar
  37. Graves JA (1996) Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet 30:233–260. doi:10.1146/annurev.genet.30.1.233 PubMedCrossRefGoogle Scholar
  38. Heard E, Bickmore W (2007) The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 19(3):311–316. doi:10.1016/j.ceb.2007.04.016 PubMedCrossRefGoogle Scholar
  39. Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20(14):1848–1867PubMedCrossRefGoogle Scholar
  40. Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL (2001) Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107(6):727–738. doi:S0092-8674(01)00598-0[pii] PubMedCrossRefGoogle Scholar
  41. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104(47):18439–18444. doi:10.1073/pnas.0707292104 PubMedCrossRefGoogle Scholar
  42. Hook EB, Warburton D (1983) The distribution of chromosomal genotypes associated with Turner’s syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum Genet 64(1):24–27PubMedCrossRefGoogle Scholar
  43. Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128(6):1077–1088. doi:10.1016/j.cell.2007.02.017 PubMedCrossRefGoogle Scholar
  44. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29. doi:10.1038/ng1136 PubMedCrossRefGoogle Scholar
  45. Jameson KA, Highnote SM, Wasserman LM (2001) Richer color experience in observers with multiple photopigment opsin genes. Psychon Bull Rev 8(2):244–261PubMedCrossRefGoogle Scholar
  46. Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 11(1):9–17. doi:10.1038/nrn2754 PubMedCrossRefGoogle Scholar
  47. Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR et al (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 76(2):227–236. doi:10.1086/427563 PubMedCrossRefGoogle Scholar
  48. Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74(2):281–289. doi:0092-8674(93)90419-Q[pii] PubMedCrossRefGoogle Scholar
  49. Johnston CM, Lovell FL, Leongamornlert DA, Stranger BE, Dermitzakis ET, Ross MT (2008) Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 4 (1):e9. doi:10.1371/journal.pgen.0040009
  50. Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43(4):513–525. doi:10.1016/j.neuron.2004.07.022 PubMedCrossRefGoogle Scholar
  51. Khalil AM, Driscoll DJ (2007) Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2(2):114–118. doi:4612[pii] PubMedCrossRefGoogle Scholar
  52. Koopman P, Gubbay J, Collignon J, Lovell-Badge R (1989) Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342(6252):940–942. doi:10.1038/342940a0 PubMedCrossRefGoogle Scholar
  53. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286(5441):964–967PubMedCrossRefGoogle Scholar
  54. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689–694. doi:10.1038/nature06192 PubMedCrossRefGoogle Scholar
  55. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557. doi:10.1086/382137 PubMedCrossRefGoogle Scholar
  56. Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21(4):400–404. doi:10.1038/7734 PubMedCrossRefGoogle Scholar
  57. Li N, Carrel L (2008) Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105(44):17055–17060. doi:10.1073/pnas.0807765105 PubMedCrossRefGoogle Scholar
  58. Lingenfelter PA, Adler DA, Poslinski D, Thomas S, Elliott RW, Chapman VM, Disteche CM (1998) Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nat Genet 18(3):212–213PubMedCrossRefGoogle Scholar
  59. Loat CS, Asbury K, Galsworthy MJ, Plomin R, Craig IW (2004) X inactivation as a source of behavioural differences in monozygotic female twins. Twin Res 7(1):54–61. doi:10.1375/13690520460741444 PubMedCrossRefGoogle Scholar
  60. Lopes AM, Burgoyne PS, Ojarikre A, Bauer J, Sargent CA, Amorim A, Affara NA (2010) Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome. BMC Genomics 11:82. doi:10.1186/1471-2164-11-82 PubMedCrossRefGoogle Scholar
  61. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedCrossRefGoogle Scholar
  62. Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80(1–4):133–137. doi:ccg80133[pii] PubMedCrossRefGoogle Scholar
  63. Marks H, Chow JC, Denissov S, Francoijs KJ, Brockdorff N, Heard E, Stunnenberg HG (2009) High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19(8):1361–1373. doi:10.1101/gr.092643.109 PubMedCrossRefGoogle Scholar
  64. Migeon BR (2007) Females are mosaics: X inactivation and sex differences in disease. Oxford University Press, OxfordGoogle Scholar
  65. Murakami K, Ohhira T, Oshiro E, Qi D, Oshimura M, Kugoh H (2009) Identification of the chromatin regions coated by non-coding Xist RNA. Cytogenet Genome Res 125(1):19–25. doi:10.1159/000207514 PubMedCrossRefGoogle Scholar
  66. Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C, Rougeulle C, Avner P (2008) Molecular coupling of Xist regulation and pluripotency. Science 321(5896):1693–1695. doi:10.1126/science.1160952 PubMedCrossRefGoogle Scholar
  67. Nguyen DK, Yang F, Kaul R, Alkan C, Antonellis A, Friery KF, Zhu B et al (2011) Clcn4–2 genomic structure differs between the X locus in Mus spretus and the autosomal locus in Mus musculus: AT motif enrichment on the X. Genome Res 21(3):402–409. doi:10.1101/gr.108563.110 PubMedCrossRefGoogle Scholar
  68. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P et al (2011) Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. doi:10.1038/nature09872
  69. Park C, Carrel L, Makova KD (2010) Strong purifying selection at genes escaping X chromosome inactivation. Mol Biol Evol 27(11):2446–2450. doi:10.1093/molbev/msq143 PubMedCrossRefGoogle Scholar
  70. Peters AH, Mermoud JE, O’Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30(1):77–80. doi:10.1038/ng789 PubMedCrossRefGoogle Scholar
  71. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616):131–135. doi:10.1126/science.1084274 PubMedCrossRefGoogle Scholar
  72. Prothero KE, Stahl JM, Carrel L (2009) Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res 17(5):637–648PubMedCrossRefGoogle Scholar
  73. Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 26(2):171–202. doi:10.1210/er.2004-0003 PubMedCrossRefGoogle Scholar
  74. Reinius B, Shi C, Hengshuo L, Sandhu KS, Radomska KJ, Rosen GD, Lu L et al (2010) Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 11:614. doi:10.1186/1471-2164-11-614 PubMedCrossRefGoogle Scholar
  75. Reisert I, Pilgrim C (1991) Sexual differentiation of monoaminergic neurons–genetic or epigenetic? Trends Neurosci 14(10):468–473PubMedCrossRefGoogle Scholar
  76. Ropers HH (2008) Genetics of intellectual disability. Curr Opin Genet Dev 18(3):241–250. doi:10.1016/j.gde.2008.07.008 PubMedCrossRefGoogle Scholar
  77. Ropers HH (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11:161–187. doi:10.1146/annurev-genom-082509-141640 PubMedCrossRefGoogle Scholar
  78. Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6(1):46–57. doi:10.1038/nrg1501 PubMedCrossRefGoogle Scholar
  79. Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M et al (2005) The DNA sequence of the human X chromosome. Nature 434(7031):325–337. doi:10.1038/nature03440 PubMedCrossRefGoogle Scholar
  80. Saifi GM, Chandra HS (1999) An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc Biol Sci 266(1415):203–209. doi:10.1098/rspb.1999.0623 PubMedCrossRefGoogle Scholar
  81. Sanchez FJ, Vilain E (2010) Genes and brain sex differences. Prog Brain Res 186:65–76. doi:10.1016/B978-0-444-53630-3.00005-1 PubMedGoogle Scholar
  82. Schoeftner S, Blanco R, de Silanes IL, Munoz P, Gomez-Lopez G, Flores JM, Blasco MA (2009) Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations. Proc Natl Acad Sci USA 106(46):19393–19398PubMedCrossRefGoogle Scholar
  83. Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41(4):488–493PubMedCrossRefGoogle Scholar
  84. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J et al (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447(7144):601–605. doi:10.1038/nature05823 PubMedCrossRefGoogle Scholar
  85. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256(5519):640–642PubMedCrossRefGoogle Scholar
  86. Talebizadeh Z, Simon SD, Butler MG (2006) X chromosome gene expression in human tissues: male and female comparisons. Genomics 88(6):675–681. doi:10.1016/j.ygeno.2006.07.016 PubMedCrossRefGoogle Scholar
  87. Tartaglia N, Cordeiro L, Howell S, Wilson R, Janusz J (2010a) The spectrum of the behavioral phenotype in boys and adolescents 47, XXY (Klinefelter syndrome). Pediatr Endocrinol Rev 8(Suppl 1):151–159PubMedGoogle Scholar
  88. Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L (2010b) A review of trisomy X (47, XXX). Orphanet J Rare Dis 5:8. doi:10.1186/1750-1172-5-8 PubMedCrossRefGoogle Scholar
  89. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143(3):390–403. doi:10.1016/j.cell.2010.09.049 PubMedCrossRefGoogle Scholar
  90. Tsuchiya KD, Greally JM, Yi Y, Noel KP, Truong JP, Disteche CM (2004) Comparative sequence and x-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse. Genome Res 14 (7):1275–1284. doi:10.1101/gr.2575904 Google Scholar
  91. Urbach A, Benvenisty N (2009) Studying early lethality of 45, XO (Turner’s syndrome) embryos using human embryonic stem cells. PLoS One 4(1):e4175PubMedCrossRefGoogle Scholar
  92. Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M, Li J et al (2004) Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology 29(2):373–384. doi:10.1038/sj.npp.1300337 PubMedCrossRefGoogle Scholar
  93. Wang Z, Willard HF, Mukherjee S, Furey TS (2006) Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput Biol 2 (9):e113. doi:10.1371/journal.pcbi.0020113
  94. Wang X, Soloway PD, Clark AG (2010) Paternally biased X inactivation in mouse neonatal brain. Genome Biol 11 (7):R79. doi:10.1186/gb-2010-11-7-r79
  95. Wareham KA, Lyon MF, Glenister PH, Williams ED (1987) Age related reactivation of an X-linked gene. Nature 327(6124):725–727PubMedCrossRefGoogle Scholar
  96. West JD, Frels WI, Chapman VM, Papaioannou VE (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12(4):873–882. doi:0092-8674(77)90151-9[pii] PubMedCrossRefGoogle Scholar
  97. Wijchers PJ, Yandim C, Panousopoulou E, Ahmad M, Harker N, Saveliev A, Burgoyne PS et al (2010) Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev Cell 19(3):477–484. doi:10.1016/j.devcel.2010.08.005 PubMedCrossRefGoogle Scholar
  98. Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, Cousin MA et al (2007) Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics 6(8):1318–1330. doi:10.1074/mcp.M600457-MCP200 PubMedCrossRefGoogle Scholar
  99. Xu J, Disteche CM (2006) Sex differences in brain expression of X- and Y-linked genes. Brain Res 1126(1):50–55. doi:10.1016/j.brainres.2006.08.049 PubMedCrossRefGoogle Scholar
  100. Xu J, Burgoyne PS, Arnold AP (2002) Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 11(12):1409–1419PubMedCrossRefGoogle Scholar
  101. Xu J, Deng X, Disteche CM (2008a) Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain. PLoS One 3 (7):e2553. doi:10.1371/journal.pone.0002553
  102. Xu J, Deng X, Watkins R, Disteche CM (2008b) Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci 28(17):4521–4527. doi:10.1523/JNEUROSCI.5382-07.2008 PubMedCrossRefGoogle Scholar
  103. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA et al (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16(8):995–1004. doi:10.1101/gr.5217506 PubMedCrossRefGoogle Scholar
  104. Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20(5):614–622. doi:10.1101/gr.103200.109 PubMedCrossRefGoogle Scholar
  105. Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 17(12):697–701. doi:S0168-9525(01)02446-5[pii] PubMedCrossRefGoogle Scholar
  106. Zinn AR, Ross JL (2001) Molecular analysis of genes on Xp controlling Turner syndrome and premature ovarian failure (POF). Semin Reprod Med 19(2):141–146PubMedCrossRefGoogle Scholar
  107. Zinn AR, Roeltgen D, Stefanatos G, Ramos P, Elder FF, Kushner H, Kowal K et al (2007) A Turner syndrome neurocognitive phenotype maps to Xp22.3. Behav Brain Funct 3:24. doi:10.1186/1744-9081-3-24

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Joel B. Berletch
    • 1
  • Fan Yang
    • 1
  • Jun Xu
    • 3
  • Laura Carrel
    • 4
  • Christine M. Disteche
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Washington School of MedicineSeattleUSA
  2. 2.Department of MedicineUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of Biomedical SciencesTufts University Cummings School of Veterinary MedicineNorth GraftonUSA
  4. 4.Department of Biochemistry and Molecular Biology, Pennsylvania State College of MedicineHersheyUSA

Personalised recommendations