Human Genetics

, Volume 130, Issue 1, pp 149–166 | Cite as

Delineating the Hemostaseome as an aid to individualize the analysis of the hereditary basis of thrombotic and bleeding disorders

  • Kim FechtelEmail author
  • Marika L. Osterbur
  • Hildegard Kehrer-Sawatzki
  • Peter D. Stenson
  • David N. Cooper
Review Paper


Next-generation sequencing and genome-wide association studies represent powerful tools to identify genetic variants that confer disease risk within populations. On their own, however, they cannot provide insight into how these variants contribute to individual risk for diseases that exhibit complex inheritance, or alternatively confer health in a given individual. Even in the case of well-characterized variants that confer a significant disease risk, more healthy individuals carry the variant, with no apparent ill effect, than those who manifest disease. Access to low-cost genome sequence data promises to provide an unprecedentedly detailed view of the nature of the hereditary component of complex diseases, but requires the large-scale comparison of sequence data from individuals with and without disease to deliver a clinical calibration. The provision of informatics support remains problematic as there are currently no means to interpret the data generated. Here, we initiate this process, a prerequisite for such a study, by narrowing the focus from an entire genome to that of a single biological system. To this end, we examine the ‘Hemostaseome,’ and more specifically focus on DNA sequence changes pertaining to those human genes known to impact upon hemostasis and thrombosis that can be analyzed coordinately, and on an individual basis, to interrogate how specific combinations of variants act to confer disease predisposition. As a first step, we delineate known members of the Hemostaseome and explore the nature of the genetic variants that may cause disease in individuals whose hemostatic balance has become shifted toward either a prothrombotic or anticoagulant phenotype.


Copy Number Variation Bleeding Disorder Individual Genome Thrombotic Disease Human Gene Mutation Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grant numbers 1R43HG004678-01 and 5R43HG004678-02 awarded to K.F. and 3rd Millennium, Inc. We gratefully acknowledge the use of the Database of Genomic Variants ( for the initial identification of published CNV reports spanning the genes of the Hemostaseome. Additional citations present in Online Resources 1 and 3 but not present in the text have their full citations annotated in Online Resource 4. To access links in HGMD®, register at the Web site ( and then log in to successfully engage embedded links within the article.

Supplementary material

439_2011_984_MOESM1_ESM.xls (72 kb)
Supplementary material 1 (XLS 73 kb)
439_2011_984_MOESM2_ESM.doc (1.1 mb)
Supplementary material 2 (DOC 1096 kb)
439_2011_984_MOESM3_ESM.xls (80 kb)
Supplementary material 3 (XLS 80 kb)
439_2011_984_MOESM4_ESM.doc (58 kb)
Supplementary material 4 (DOC 58 kb)


  1. ACOG Committee Opinion (2009) ACOG Committee Opinion no. 451: Von Willebrand disease in women. Obstet Gynecol 114:1439–1443. doi: 10.1097/AOG.0b013e3181c6f975
  2. Arellano AR, Bezemer ID, Tong CH, Catanese JJ, Devlin JJ, Reitsma PH, Bare LA, Rosendaal FR (2010) Gene variants associated with venous thrombosis: confirmation in the MEGA study. J Thromb Haemost 8:1132–1134. doi: 10.1111/j.1538-7836.2010.03782.x Google Scholar
  3. Asatiani E, Kessler CM (2007) Multiple congenital coagulopathies co-expressed with von Willebrand’s disease: the experience of Hemophilia Region III Treatment Centers over 25 years and review of the literature. Haemophilia 13:685–696. doi: 10.1111/j.1365-2516.2007.01541.x PubMedCrossRefGoogle Scholar
  4. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic A, Morgan AA, Pushkarev D, Neff NF, Hudgins L, Gong L, Hodges LM, Berlin DS, Thorn CF, Sangkuhl K, Hebert JM, Woon M, Sagreiya H, Whaley R, Knowles JW, Chou MF, Thakuria JV, Rosenbaum AM, Zaranek AW, Church GM, Greely HT, Quake SR, Altman RB (2010) Clinical assessment incorporating a personal genome. Lancet 375:1525–1535. doi: 10.1016/S0140-6736(10)60452-7 PubMedCrossRefGoogle Scholar
  5. Astermark J, Tengborn L, Hedner U, Berntorp E (2001) Anti- and procoagulant activities in factor VII-deficient subjects. Thromb Res 101:435–440PubMedCrossRefGoogle Scholar
  6. Astermark J, Lacroix-Desmazes S, Reding MT (2008) Inhibitor development. Haemophilia 14(Suppl 3):36–42. doi: 10.1111/j.1365-2516.2008.01711.x PubMedCrossRefGoogle Scholar
  7. Austin H, De Staercke C, Lally C, Bezemer ID, Rosendaal FR, Craig Hooper W (2011) New gene variants associated with venous thrombosis—a replication study in United States whites and blacks. J Thromb Haemost 9:489–495. doi: 10.1111/j.1538-7836.2011.04185.x Google Scholar
  8. Beckmann JS, Sharp AJ, Antonarakis SE (2008) CNVs and genetic medicine (excitement and consequences of a rediscovery). Cytogenet Genome Res 123:7–16. doi: 10.1159/000184687 PubMedCrossRefGoogle Scholar
  9. Berg LP, Varon D, Martinowitz U, Wieland K, Kakkar VV, Cooper DN (1994) Combined factor VIII/factor XI deficiency may cause intra-familial clinical variability in haemophilia A among Ashkenazi Jews. Blood Coagul Fibrinolysis 5:59–62PubMedCrossRefGoogle Scholar
  10. Bernardi F, Legnani C, Micheletti F, Lunghi B, Ferraresi P, Palareti G, Biagi R, Marchetti G (1996) A heparin cofactor II mutation (HCII Rimini) combined with factor V Leiden or type I protein C deficiency in two unrelated thrombophilic subjects. Thromb Haemost 76:505–509PubMedGoogle Scholar
  11. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67. doi: 10.1038/369064a0 PubMedCrossRefGoogle Scholar
  12. Bongers TN, de Bruijne EL, Dippel DW, de Jong AJ, Deckers JW, Poldermans D, de Maat MP, Leebeek FW (2009) Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 207:250–254. doi: 10.1016/j.atherosclerosis.2009.04.013 PubMedCrossRefGoogle Scholar
  13. Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM, Sodergren EJ, Birch DG, Wheaton DH, Heckenlively JR, Liu Q, Pierce EA, Weinstock GM, Daiger SP (2011) Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 52:494–503. doi: 10.1167/iovs.10-6180 PubMedCrossRefGoogle Scholar
  14. Castaman G, Faioni EM, Tosetto A, Bernardi F (2003) The factor V HR2 haplotype and the risk of venous thrombosis: a meta-analysis. Haematologica 88:1182–1189PubMedGoogle Scholar
  15. Christiansen SC, Lijfering WM, Helmerhorst FM, Rosendaal FR, Cannegieter SC (2010) Sex difference in risk of recurrent venous thrombosis and the risk profile for a second event. J Thromb Haemost 8:2159–2168. doi: 10.1111/j.1538-7836.2010.03994.x PubMedCrossRefGoogle Scholar
  16. Clarke AJ, Cooper DN (2010) GWAS: heritability missing in action? Eur J Hum Genet 18:859–861. doi: 10.1038/ejhg.2010.35 Google Scholar
  17. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M (2009) Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 361:2518–2528. doi: 10.1056/NEJMoa0902604 PubMedCrossRefGoogle Scholar
  18. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712. doi: 10.1038/nature08516 Google Scholar
  19. Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD (2010) Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 31:631–655. doi: 10.1002/humu.21260 PubMedCrossRefGoogle Scholar
  20. Corral J, Zuazu-Jausoro I, Rivera J, Gonzalez-Conejero R, Ferrer F, Vicente V (1999) Clinical and analytical relevance of the combination of prothrombin 20210A/A and factor V Leiden: results from a large family. Br J Haematol 105:560–563PubMedCrossRefGoogle Scholar
  21. Daly AK (2009) Pharmacogenomics of anticoagulants: steps toward personal dosage. Genome Med 1:10. doi: 10.1186/gm10 PubMedCrossRefGoogle Scholar
  22. de Smith AJ, Walters RG, Froguel P, Blakemore AI (2008) Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet Genome Res 123:17–26. doi: 10.1159/000184688 PubMedCrossRefGoogle Scholar
  23. De Stefano V, Zappacosta B, Persichilli S, Rossi E, Casorelli I, Paciaroni K, Chiusolo P, Leone AM, Giardina B, Leone G (1999) Prevalence of mild hyperhomocysteinaemia and association with thrombophilic genotypes (factor V Leiden and prothrombin G20210A) in Italian patients with venous thromboembolic disease. Br J Haematol 106:564–568PubMedCrossRefGoogle Scholar
  24. Douketis J, Tosetto A, Marcucci M, Baglin T, Cushman M, Eichinger S, Palareti G, Poli D, Tait RC, Iorio A (2010) Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of d-dimer testing to assess recurrence risk after unprovoked venous thromboembolism. Ann Intern Med 153:523–531. doi: 10.1059/0003-4819-153-8-201010190-00009 PubMedGoogle Scholar
  25. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450. doi: 10.1038/nrg2809 PubMedCrossRefGoogle Scholar
  26. Epstein RS, Moyer TP, O’Kane DJ, Aubert RE, Xia F, Verbrugge RR, Gage BF, Teagarden JR (2010) Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 55:2804–2812. doi: 10.1016/j.jacc.2010.03.009 PubMedCrossRefGoogle Scholar
  27. Formstone CJ, Hallam PJ, Tuddenham EG, Voke J, Layton M, Nicolaides K, Hann IM, Cooper DN (1996) Severe perinatal thrombosis in double and triple heterozygous offspring of a family segregating two independent protein S mutations and a protein C mutation. Blood 87:3731–3737PubMedGoogle Scholar
  28. Gandrille S, Greengard JS, Alhenc-Gelas M, Juhan-Vague I, Abgrall JF, Jude B, Griffin JH, Aiach M (1995) Incidence of activated protein C resistance caused by the ARG 506 GLN mutation in factor V in 113 unrelated symptomatic protein C-deficient patients. The French Network on the behalf of INSERM. Blood 86:219–224PubMedGoogle Scholar
  29. Gemmati D, Serino ML, Moratelli S, Mari R, Ballerini G, Scapoli GL (1998) Coexistence of antithrombin deficiency, factor V Leiden and hyperhomocysteinemia in a thrombotic family. Blood Coagul Fibrinolysis 9:173–176PubMedCrossRefGoogle Scholar
  30. Ghosh K, Shetty S, Mohanty D (2001) Milder clinical presentation of haemophilia A with severe deficiency of factor VIII as measured by one-stage assay. Haemophilia 7:9–12PubMedCrossRefGoogle Scholar
  31. Girolami A, Luzzatto G, Varvarikis C, Pellati D, Sartori R, Girolami B (2005) Main clinical manifestations of a bleeding diathesis: an often disregarded aspect of medical and surgical history taking. Haemophilia 11:193–202. doi: 10.1111/j.1365-2516.2005.01100.x Google Scholar
  32. Girolami A, Tezza F, Scandellari R, Vettore S, Girolami B (2010) Associated prothrombotic conditions are probably responsible for the occurrence of thrombosis in almost all patients with congenital FVII deficiency. Critical review of the literature. J Thromb Thrombolysis 30:172–178. doi: 10.1007/s11239-009-0435-y Google Scholar
  33. Gohil R, Peck G, Sharma P (2009) The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb Haemost 102:360–370. doi: 10.1160/TH09-01-0013 PubMedGoogle Scholar
  34. Gonzalez Ordonez AJ, Sanchez LM, Medina Rodriguez JM, Martinez Muniz MA, Menendez Caro JL, Alvarez MV (1999) Double carriers of the factor V Leiden and prothrombin (FIIG20210A) mutations: a description of four cases. Haematologica 84:1054–1056PubMedGoogle Scholar
  35. Gonzalez CM, Diaz-Golpe V, Martin S, Sanchez Del Real J, Redondo MC (2003) Combination of congenital coagulation disorders: factor II gene mutation G20210A, factor V Leiden gene mutation G1691A and protein S deficiency. A family study. Haematologica 88:ECR20Google Scholar
  36. Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, Li Y, Sarwar R, Langley SR, Bauerfeind A, Hummel O, Lee YA, Paskas S, Rintisch C, Saar K, Cooper J, Buchan R, Gray EE, Cyster JG, Erdmann J, Hengstenberg C, Maouche S, Ouwehand WH, Rice CM, Samani NJ, Schunkert H, Goodall AH, Schulz H, Roider HG, Vingron M, Blankenberg S, Munzel T, Zeller T, Szymczak S, Ziegler A, Tiret L, Smyth DJ, Pravenec M, Aitman TJ, Cambien F, Clayton D, Todd JA, Hubner N, Cook SA (2010) A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–464. doi: 10.1038/nature09386 PubMedCrossRefGoogle Scholar
  37. Iorio A, Kearon C, Filippucci E, Marcucci M, Macura A, Pengo V, Siragusa S, Palareti G (2010) Risk of recurrence after a first episode of symptomatic venous thromboembolism provoked by a transient risk factor: a systematic review. Arch Intern Med 170:1710–1716. doi: 10.1001/archinternmed.2010.367 PubMedCrossRefGoogle Scholar
  38. Jayandharan GR, Nair SC, Poonnoose PM, Thomas R, John J, Keshav SK, Cherian RS, Devadarishini M, Lakshmi KM, Shaji RV, Viswabandya A, George B, Mathews V, Chandy M, Srivastava A (2009) Polymorphism in factor VII gene modifies phenotype of severe haemophilia. Haemophilia 15:1228–1236. doi: 10.1111/j.1365-2516.2009.02080.x PubMedCrossRefGoogle Scholar
  39. Kamstrup PR (2010) Lipoprotein(a) and ischemic heart disease-A causal association? A review. Atherosclerosis. doi: 10.1016/j.atherosclerosis.2009.12.036
  40. Katz R, Shani D (2005) A case of deep vein thrombosis in patient with Hermansky–Pudlak syndrome. Ann Hematol 84:763. doi: 10.1007/s00277-005-1081-x PubMedCrossRefGoogle Scholar
  41. Koeleman BP, Reitsma PH, Allaart CF, Bertina RM (1994) Activated protein C resistance as an additional risk factor for thrombosis in protein C-deficient families. Blood 84:1031–1035PubMedGoogle Scholar
  42. Koeleman BP, van Rumpt D, Hamulyak K, Reitsma PH, Bertina RM (1995) Factor V Leiden: an additional risk factor for thrombosis in protein S deficient families? Thromb Haemost 74:580–583PubMedGoogle Scholar
  43. Kohane IS, Masys DR, Altman RB (2006) The incidentalome: a threat to genomic medicine. JAMA 296:212–215. doi: 10.1001/jama.296.2.212 PubMedCrossRefGoogle Scholar
  44. Koren A, Levin C, Hujirat Y, El-Hasid R, Kutai M, Lanir N, Shalev S, Brenner B (2003) Thrombophilia in infancy: factor V Leiden and MTHFR or factor II double heterozygocity as a risk factor. Pediatr Hematol Oncol 20:219–227PubMedGoogle Scholar
  45. Kraft HG, Lingenhel A, Kochl S, Hoppichler F, Kronenberg F, Abe A, Muhlberger V, Schonitzer D, Utermann G (1996) Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol 16:713–719PubMedCrossRefGoogle Scholar
  46. Lalonde E, Albrecht S, Ha KC, Jacob K, Bolduc N, Polychronakos C, Dechelotte P, Majewski J, Jabado N (2010) Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat 31:918–923. doi: 10.1002/humu.21293 PubMedCrossRefGoogle Scholar
  47. Lane DA, Auberger K, Ireland H, Roscher AA, Thein SL (1996) Prenatal diagnosis in combined antithrombin and factor V gene mutation. Br J Haematol 94:753–755PubMedCrossRefGoogle Scholar
  48. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segre AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Magi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Carola Zillikens M, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Hua Zhao J, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, Konig IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Muller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838. doi: 10.1038/nature09410 PubMedCrossRefGoogle Scholar
  49. Larciprete G, Rossi F, Deaibess T, Brienza L, Barbati G, Romanini E, Gioia S, Cirese E (2010) Double inherited thrombophilias and adverse pregnancy outcomes: fashion or science? J Obstet Gynaecol Res 36:996–1002. doi: 10.1111/j.1447-0756.2010.01262.x PubMedCrossRefGoogle Scholar
  50. Lee C, Scherer SW (2010) The clinical context of copy number variation in the human genome. Expert Rev Mol Med 12:e8. doi: 10.1017/S1462399410001390
  51. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254. doi: 10.1371/journal.pbio.0050254 PubMedCrossRefGoogle Scholar
  52. Lijfering WM, Middeldorp S, Veeger NJ, Hamulyak K, Prins MH, Buller HR, van der Meer J (2010) Risk of recurrent venous thrombosis in homozygous carriers and double heterozygous carriers of factor V Leiden and prothrombin G20210A. Circulation 121:1706–1712. doi: 10.1161/CIRCULATIONAHA.109.906347 PubMedCrossRefGoogle Scholar
  53. Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C, Lam S, Gazdar AF, Minna JD, Lam WL (2008) DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene 27:4615–4624. doi: 10.1038/onc.2008.98 PubMedCrossRefGoogle Scholar
  54. Lotta LA (2010) Genome-wide association studies in atherothrombosis. Eur J Intern Med 21:74–78. doi: 10.1016/j.ejim.2009.11.003 PubMedCrossRefGoogle Scholar
  55. Mannucci PM, Asselta R, Duga S, Guella I, Spreafico M, Lotta L, Angelica Merlini P, Peyvandi F, Kathiresan S, Ardissino D (2010) The association of factor v Leiden with myocardial infarction is replicated in 1,880 patients with premature disease. J Thromb Haemost 8:2116–2121. doi: 10.1111/j.1538-7836.2010.03982.x Google Scholar
  56. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi: 10.1038/nature08494 PubMedCrossRefGoogle Scholar
  57. Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84. doi: 10.1186/gm205 PubMedCrossRefGoogle Scholar
  58. Mariani G, Herrmann FH, Schulman S, Batorova A, Wulff K, Etro D, Dolce A, Auerswald G, Astermark J, Schved JF, Ingerslev J, Bernardi F (2003) Thrombosis in inherited factor VII deficiency. J Thromb Haemost 1:2153–2158PubMedCrossRefGoogle Scholar
  59. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010a) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793. doi: 10.1038/ng.646 PubMedCrossRefGoogle Scholar
  60. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010b) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35. doi: 10.1038/ng.499 PubMedCrossRefGoogle Scholar
  61. Nowak-Gottl U, Escuriola C, Kurnik K, Schobess R, Horneff S, Kosch A, Kreuz W, Pollmann H (2003) Haemophilia and thrombophilia. What do we learn about combined inheritance of both genetic variations? Hamostaseologie 23:36–40. doi: 10.1267/Hamo03010036 PubMedGoogle Scholar
  62. O’Brien LA, James PD, Othman M, Berber E, Cameron C, Notley CR, Hegadorn CA, Sutherland JJ, Hough C, Rivard GE, O’Shaunessey D, Lillicrap D (2003) Founder von Willebrand factor haplotype associated with type 1 von Willebrand disease. Blood 102:549–557. doi: 10.1182/blood-2002-12-3693 PubMedCrossRefGoogle Scholar
  63. Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S, Mosher DS, Spady TC, Elkahloun A, Cargill M, Jones PG, Maslen CL, Acland GM, Sutter NB, Kuroki K, Bustamante CD, Wayne RK, Ostrander EA (2009) An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325:995–998. doi: 10.1126/science.1173275 PubMedCrossRefGoogle Scholar
  64. Paterson AD, Rommens JM, Bharaj B, Blavignac J, Wong I, Diamandis M, Waye JS, Rivard GE, Hayward CP (2010) Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 115:1264–1266. doi: 10.1182/blood-2009-07-233965 PubMedCrossRefGoogle Scholar
  65. Pelak K, Shianna KV, Ge D, Maia JM, Zhu M, Smith JP, Cirulli ET, Fellay J, Dickson SP, Gumbs CE, Heinzen EL, Need AC, Ruzzo EK, Singh A, Campbell CR, Hong LK, Lornsen KA, McKenzie AM, Sobreira NL, Hoover-Fong JE, Milner JD, Ottman R, Haynes BF, Goedert JJ, Goldstein DB (2010) The characterization of twenty sequenced human genomes. PLoS Genet 6:e1001111. doi: 10.1371/journal.pgen.1001111
  66. Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, Tran CW, Scheffer A, Steinfeld I, Tsang P, Yamada NA, Park HS, Kim JI, Seo JS, Yakhini Z, Laderman S, Bruhn L, Lee C (2008) The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 82:685–695. doi: 10.1016/j.ajhg.2007.12.010 PubMedCrossRefGoogle Scholar
  67. Pintao MC, Garcia AA, Borgel D, Alhenc-Gelas M, Spek CA, de Visser MC, Gandrille S, Reitsma PH (2009) Gross deletions/duplications in PROS1 are relatively common in point mutation-negative hereditary protein S deficiency. Hum Genet 126:449–456. doi: 10.1007/s00439-009-0687-9 PubMedCrossRefGoogle Scholar
  68. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703PubMedGoogle Scholar
  69. Rogaev EI, Grigorenko AP, Faskhutdinova G, Kittler EL, Moliaka YK (2009) Genotype analysis identifies the cause of the “royal disease”. Science 326:817. doi: 10.1126/science.1180660
  70. Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U (2011) Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost 105:269–273. doi: 10.1160/TH10-05-0307 Google Scholar
  71. Samama MM, Trossaert M, Horellou MH, Elalamy I, Conard J, Deschamps A (1995) Risk of thrombosis in patients homozygous for factor V Leiden. Blood 86:4700–4702PubMedGoogle Scholar
  72. Sansores-Garcia L, Majluf-Cruz A (1998) Arterial and venous thrombosis associated to combined deficiency of protein C and antithrombin III. Am J Hematol 57:182–183. doi: 10.1002/(SICI)1096-8652(199802)57:2<182:AID-AJH20>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  73. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223. doi: 10.1038/nature08454 PubMedCrossRefGoogle Scholar
  74. Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219. doi: 10.1016/j.gde.2009.04.010 PubMedCrossRefGoogle Scholar
  75. Schuster-Bockler B, Conrad D, Bateman A (2010) Dosage sensitivity shapes the evolution of copy-number varied regions. PLoS One 5:e9474. doi: 10.1371/journal.pone.0009474 PubMedCrossRefGoogle Scholar
  76. Smith NL, Rice KM, Lumley T, Heckbert SR, Psaty BM (2009a) Discovering novel risk factors for venous thrombosis: a candidate-gene approach. Thromb Res 123(Suppl 4):S25–S29. doi: 10.1016/S0049-3848(09)70139-2 PubMedCrossRefGoogle Scholar
  77. Smith NL, Wiggins KL, Reiner AP, Lange LA, Cushman M, Heckbert SR, Lumley T, Rice KM, Folsom AR, Psaty BM (2009b) Replication of findings on the association of genetic variation in 24 hemostasis genes and risk of incident venous thrombosis. J Thromb Haemost 7:1743–1746. doi: 10.1111/j.1538-7836.2009.03567.x PubMedCrossRefGoogle Scholar
  78. Sofi F, Cesari F, Abbate R, Gensini GF, Broze GJ Jr, Fedi S (2010) A meta-analysis of potential risks of low levels of protein Z for diseases related to vascular thrombosis. Thromb Haemost 103:749–756. doi: 10.1160/TH09-09-0645 PubMedCrossRefGoogle Scholar
  79. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, Deloukas P, Hurles ME, Dermitzakis ET (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853. doi: 10.1126/science.1136678 PubMedCrossRefGoogle Scholar
  80. Tirado I, Mateo J, Soria JM, Oliver A, Borrell M, Coll I, Vallve C, Souto JC, Martinez-Sanchez E, Fontcuberta J (2001) Contribution of prothrombin 20210A allele and factor V Leiden mutation to thrombosis risk in thrombophilic families with other hemostatic deficiencies. Haematologica 86:1200–1208PubMedGoogle Scholar
  81. U.S. Preventive Services Task Force (2009b) Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 150:396–404Google Scholar
  82. van der Hoek YY, Wittekoek ME, Beisiegel U, Kastelein JJ, Koschinsky ML (1993) The apolipoprotein(a) kringle IV repeats which differ from the major repeat kringle are present in variably-sized isoforms. Hum Mol Genet 2:361–366PubMedCrossRefGoogle Scholar
  83. Wells PS, Anderson JL, Scarvelis DK, Doucette SP, Gagnon F (2006) Factor XIII Val34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis. Am J Epidemiol 164:101–109. doi: 10.1093/aje/kwj179 PubMedCrossRefGoogle Scholar
  84. Wolff T, Miller T, Ko S (2009) Aspirin for the primary prevention of cardiovascular events: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 150:405–410. doi: 150/6/405 [pii]Google Scholar
  85. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, MacAulay C, Ng RT, Brown CJ, Eichler EE, Lam WL (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91–104. doi: 10.1086/510560 PubMedCrossRefGoogle Scholar
  86. Yang Q, Kathiresan S, Lin JP, Tofler GH, O’Donnell CJ (2007) Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S12. doi: 10.1186/1471-2350-8-S1-S12 PubMedCrossRefGoogle Scholar
  87. Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD, Collins R, Danesh J (2006) Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet 367:651–658. doi: 10.1016/S0140-6736(06)68263-9 PubMedCrossRefGoogle Scholar
  88. Young G, Albisetti M, Bonduel M, Brandao L, Chan A, Friedrichs F, Goldenberg NA, Grabowski E, Heller C, Journeycake J, Kenet G, Krumpel A, Kurnik K, Lubetsky A, Male C, Manco-Johnson M, Mathew P, Monagle P, van Ommen H, Simioni P, Svirin P, Tormene D, Nowak-Gottl U (2008) Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and meta-analysis of observational studies. Circulation 118:1373–1382. doi: 10.1161/CIRCULATIONAHA.108.789008 PubMedCrossRefGoogle Scholar
  89. Zhang AH, Skupsky J, Scott DW (2009) Factor VIII inhibitors: risk factors and methods for prevention and immune modulation. Clin Rev Allergy Immunol 37:114–124. doi: 10.1007/s12016-009-8122-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kim Fechtel
    • 1
    Email author
  • Marika L. Osterbur
    • 1
  • Hildegard Kehrer-Sawatzki
    • 2
  • Peter D. Stenson
    • 3
  • David N. Cooper
    • 3
  1. 1.3rd Millennium Inc.WalthamUSA
  2. 2.Institute of Human GeneticsUniversity of UlmUlmGermany
  3. 3.Institute of Medical Genetics, School of MedicineCardiff UniversityCardiffUK

Personalised recommendations