Human Genetics

, Volume 128, Issue 5, pp 515–527 | Cite as

A large-scale candidate gene association study of age at menarche and age at natural menopause

  • Chunyan He
  • Peter Kraft
  • Daniel I. Chasman
  • Julie E. Buring
  • Constance Chen
  • Susan E. Hankinson
  • Guillaume Paré
  • Stephen Chanock
  • Paul M. Ridker
  • David J. Hunter
Original Investigation

Abstract

Recent genome-wide association (GWA) studies have identified several novel genetic loci associated with age at menarche and age at natural menopause. However, the stringent significance threshold used in GWA studies potentially led to false negatives and true associations may have been overlooked. Incorporating biologically relevant information, we examined whether common genetic polymorphisms in candidate genes of nine groups of biologically plausible pathways and related phenotypes are associated with age at menarche and age at natural menopause. A total of 18,862 genotyped and imputed single nucleotide polymorphisms (SNPs) in 278 genes were assessed for their associations with these two traits among a total of 24,341 women from the Nurses’ Health Study (NHS, N = 2,287) and the Women’s Genome Health Study (WGHS, N = 22,054). Linear regression was used to assess the marginal association of each SNP with each phenotype. We adjusted for multiple testing within each gene to identify statistically significant SNP associations at the gene level. To evaluate the overall evidence for an excess of statistically significant gene associations over the proportion expected by chance, we applied a one-sample test of proportion to each group of candidate genes. The steroid-hormone metabolism and biosynthesis pathway was found significantly associated with both age at menarche and age at natural menopause (P = 0.040 and 0.011, respectively). In addition, the group of genes associated with precocious or delayed puberty was found significantly associated with age at menarche (P = 0.013), and the group of genes involved in premature ovarian failure with age at menopause (P = 0.025).

Supplementary material

439_2010_878_MOESM1_ESM.doc (756 kb)
Supplementary material 1 (DOC 755 kb)

References

  1. Aulchenko YS, Struchalin MV, van Duijn CM (2010) ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11:134Google Scholar
  2. Boot AM, van der Sluis IM, de Muinck Keizer-Schrama SM, van Meurs JB, Krenning EP, Pols HA, Uitterlinden AG (2004) Estrogen receptor alpha gene polymorphisms and bone mineral density in healthy children and young adults. Calcif Tissue Int 74:495–500CrossRefPubMedGoogle Scholar
  3. Chie WC, Liu YH, Chi J, Wu V, Chen A (1997) Predictive factors for early menarche in Taiwan. J Formos Med Assoc 96:446–450PubMedGoogle Scholar
  4. Colditz GA, Stampfer MJ, Willett WC, Stason WB, Rosner B, Hennekens CH, Speizer FE (1987) Reproducibility and validity of self-reported menopausal status in a prospective cohort study. Am J Epidemiol 126:319–325PubMedGoogle Scholar
  5. de Bruin JP, Bovenhuis H, van Noord PA, Pearson PL, van Arendonk JA, te Velde ER, Kuurman WW, Dorland M (2001) The role of genetic factors in age at natural menopause. Hum Reprod 16:2014–2018CrossRefPubMedGoogle Scholar
  6. Dvornyk V, Long JR, Liu PY, Zhao LJ, Shen H, Recker RR, Deng HW (2006) Predictive factors for age at menopause in Caucasian females. Maturitas 54:19–26CrossRefPubMedGoogle Scholar
  7. Ennis S, Ward D, Murray A (2006) Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur J Hum Genet 14:253–255CrossRefPubMedGoogle Scholar
  8. Gajdos ZK, Butler JL, Henderson KD, He C, Supelak P, Euyud M (2008) Association studies of common variants in ten hypogonadotropic hypogonadism genes with age at menarche. J Clin Endocrinol Metab 93:4224–4225CrossRefGoogle Scholar
  9. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369CrossRefPubMedGoogle Scholar
  10. Gauvreau K (2006) Hypothesis testing: proportions. Circulation 114:1545–1548CrossRefPubMedGoogle Scholar
  11. Gorai I, Tanaka K, Inada M, Morinaga H, Uchiyama Y, Kikuchi R, Chaki O, Hirahara F (2003) Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-alpha gene polymorphisms, are associated with the onset of menarche in healthy postmenopausal Japanese women. J Clin Endocrinol Metab 88:799–803CrossRefPubMedGoogle Scholar
  12. Guo Y, Shen H, Xiao P, Xiong DH, Yang TL, Guo YF, Long JR, Recker RR, Deng HW (2006a) Genomewide linkage scan for quantitative trait loci underlying variation in age at menarche. J Clin Endocrinol Metab 91:1009–1014CrossRefPubMedGoogle Scholar
  13. Guo Y, Xiong DH, Yang TL, Guo YF, Recker RR, Deng HW (2006b) Polymorphisms of estrogen-biosynthesis genes CYP17 and CYP19 may influence age at menarche: a genetic association study in Caucasian females. Hum Mol Genet 15:2401–2408CrossRefPubMedGoogle Scholar
  14. He LN, Xiong DH, Liu YJ, Zhang F, Recker RR, Deng HW (2007) Association study of the oestrogen signalling pathway genes in relation to age at natural menopause. J Genet 86:269–276CrossRefPubMedGoogle Scholar
  15. He C, Kraft P, Chen C, Buring JE, Pare G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI (2009) Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat GenetGoogle Scholar
  16. Hefler LA, Worda C, Huber JC, Tempfer CB (2002) A polymorphism of the Nos3 gene and age at natural menopause. Fertil Steril 78:1184–1186CrossRefPubMedGoogle Scholar
  17. Hefler LA, Grimm C, Heinze G, Schneeberger C, Mueller MW, Muendlein A, Huber JC, Leodolter S, Tempfer CB (2005) Estrogen-metabolizing gene polymorphisms and age at natural menopause in Caucasian women. Hum Reprod 20:1422–1427CrossRefPubMedGoogle Scholar
  18. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefPubMedGoogle Scholar
  19. Hirschhorn JN, Altshuler D (2002) Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab 87:4438–4441CrossRefPubMedGoogle Scholar
  20. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874CrossRefPubMedGoogle Scholar
  21. Ito M, Yamada M, Hayashi K, Ohki M, Uetani M, Nakamura T (1995) Relation of early menarche to high bone mineral density. Calcif Tissue Int 57:11–14CrossRefPubMedGoogle Scholar
  22. Kaaks R, Lukanova A, Kurzer MS (2002) Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11:1531–1543PubMedGoogle Scholar
  23. Kaprio J, Rimpela A, Winter T, Viken RJ, Rimpela M, Rose RJ (1995) Common genetic influences on BMI and age at menarche. Hum Biol 67:739–753PubMedGoogle Scholar
  24. Kevenaar ME, Themmen AP, Rivadeneira F, Uitterlinden AG, Laven JS, van Schoor NM, Lips P, Pols HA, Visser JA (2007) A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum Reprod 22:2382–2388CrossRefPubMedGoogle Scholar
  25. Kok HS, Onland-Moret NC, van Asselt KM, van Gils CH, van der Schouw YT, Grobbee DE, Peeters PH (2005) No association of estrogen receptor alpha and cytochrome P450c17alpha polymorphisms with age at menopause in a Dutch cohort. Hum Reprod 20:536–542CrossRefPubMedGoogle Scholar
  26. Koochmeshgi J, Hosseini-Mazinani SM, Morteza Seifati S, Hosein-Pur-Nobari N, Teimoori-Toolabi L (2004) Apolipoprotein E genotype and age at menopause. Ann N Y Acad Sci 1019:564–567CrossRefPubMedGoogle Scholar
  27. Kritz-Silverstein D, Barrett-Connor E (1993) Early menopause, number of reproductive years, and bone mineral density in postmenopausal women. Am J Public Health 83:983–988CrossRefPubMedGoogle Scholar
  28. Kvale G (1992) Reproductive factors in breast cancer epidemiology. Acta Oncol 31:187–194CrossRefPubMedGoogle Scholar
  29. Lai J, Vesprini D, Chu W, Jernstrom H, Narod SA (2001) CYP gene polymorphisms and early menarche. Mol Genet Metab 74:449–457CrossRefPubMedGoogle Scholar
  30. Li Y, Abecasis GR (2006) Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet S79:2290Google Scholar
  31. Long JR, Xu H, Zhao LJ, Liu PY, Shen H, Liu YJ, Xiong DH, Xiao P, Liu YZ, Dvornyk V, Li JL, Recker RR, Deng HW (2005) The oestrogen receptor alpha gene is linked and/or associated with age of menarche in different ethnic groups. J Med Genet 42:796–800CrossRefPubMedGoogle Scholar
  32. Long JR, Shu XO, Cai Q, Cai H, Gao YT, Jin F, Zheng W (2006) Polymorphisms of the CYP1B1 gene may be associated with the onset of natural menopause in Chinese women. Maturitas 55:238–246CrossRefPubMedGoogle Scholar
  33. Mallolas J, Duran M, Sanchez A, Jimenez D, Castellvi-Bel S, Rife M, Mila M (2001) Implications of the FMR1 gene in menopause: study of 147 Spanish women. Menopause 8:106–110CrossRefPubMedGoogle Scholar
  34. McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199CrossRefPubMedGoogle Scholar
  35. Meyer JM, Eaves LJ, Heath AC, Martin NG (1991) Estimating genetic influences on the age-at-menarche: a survival analysis approach. Am J Med Genet 39:148–154CrossRefPubMedGoogle Scholar
  36. Mitchell ES, Farin FM, Stapleton PL, Tsai JM, Tao EY, Smith-DiJulio K, Woods NF (2008) Association of estrogen-related polymorphisms with age at menarche, age at final menstrual period, and stages of the menopausal transition. Menopause 15:105–111PubMedGoogle Scholar
  37. Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA (2005a) Heritability of age at natural menopause in the Framingham Heart Study. J Clin Endocrinol Metab 90:3427–3430CrossRefPubMedGoogle Scholar
  38. Murabito JM, Yang Q, Fox CS, Cupples LA (2005b) Genome-wide linkage analysis to age at natural menopause in a community-based sample: the Framingham Heart Study. Fertil Steril 84:1674–1679CrossRefPubMedGoogle Scholar
  39. Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, Rand WM (2002) Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol 155:672–679CrossRefPubMedGoogle Scholar
  40. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ, Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, Northstone K, Ring SM, Rubin C, Sims MA, Song K, Strachan DP, Vollenweider P, Waeber G, Waterworth DM, Wong A, Deloukas P, Barroso I, Mooser V, Loos RJ, Wareham NJ (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat GenetGoogle Scholar
  41. Pan F, Xiao P, Guo Y, Liu YJ, Deng HY, Recker RR, Deng HW (2008) Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum Genet 123:419–427CrossRefPubMedGoogle Scholar
  42. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190CrossRefPubMedGoogle Scholar
  43. Pechere-Bertschi A, Burnier M (2004) Female sex hormones, salt, and blood pressure regulation. Am J Hypertens 17:994–1001CrossRefPubMedGoogle Scholar
  44. Peeters PH, Verbeek AL, Krol A, Matthyssen MM, de Waard F (1995) Age at menarche and breast cancer risk in nulliparous women. Breast Cancer Res Treat 33:55–61CrossRefPubMedGoogle Scholar
  45. Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E, Cherkas L, Eiriksdottir G, Estrada K, Ferrucci L, Folsom AR, Garcia M, Gudnason V, Hofman A, Karasik D, Kiel DP, Launer LJ, van Meurs J, Nalls MA, Rivadeneira F, Shuldiner AR, Singleton A, Soranzo N, Tanaka T, Visser JA, Weedon MN, Wilson SG, Zhuang V, Streeten EA, Harris TB, Murray A, Spector TD, Demerath EW, Uitterlinden AG, Murabito JM (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat GenetGoogle Scholar
  46. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  47. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228CrossRefPubMedGoogle Scholar
  48. Rees M (1995) The age of menarche. Orgyn 4:2–4PubMedGoogle Scholar
  49. Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE, Hennekens CH, Buring JE (2005) A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med 352:1293–1304CrossRefPubMedGoogle Scholar
  50. Ridker PM, Chasman DI, Zee RY, Parker A, Rose L, Cook NR, Buring JE (2008a) Rationale, design, and methodology of the Women’s Genome Health Study: a genome-wide association study of more than 25, 000 initially healthy american women. Clin Chem 54:249–255CrossRefPubMedGoogle Scholar
  51. Ridker PM, Pare G, Parker A, Zee RY, Danik JS, Buring JE, Kwiatkowski D, Cook NR, Miletich JP, Chasman DI (2008b) Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women’s Genome Health Study. Am J Hum Genet 82:1185–1192CrossRefPubMedGoogle Scholar
  52. Rothenbuhler A, Fradin D, Heath S, Lefevre H, Bouvattier C, Lathrop M, Bougneres P (2006) Weight-adjusted genome scan analysis for mapping quantitative trait Loci for menarchal age. J Clin Endocrinol Metab 91:3534–3537CrossRefPubMedGoogle Scholar
  53. Sharma K (2002) Genetic basis of human female pelvic morphology: a twin study. Am J Phys Anthropol 117:327–333CrossRefPubMedGoogle Scholar
  54. Snieder H, MacGregor AJ, Spector TD (1998) Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 83:1875–1880CrossRefPubMedGoogle Scholar
  55. Stavrou I, Zois C, Ioannidis JP, Tsatsoulis A (2002) Association of polymorphisms of the oestrogen receptor alpha gene with the age of menarche. Hum Reprod 17:1101–1105CrossRefPubMedGoogle Scholar
  56. Stavrou I, Zois C, Chatzikyriakidou A, Georgiou I, Tsatsoulis A (2006) Combined estrogen receptor alpha and estrogen receptor beta genotypes influence the age of menarche. Hum Reprod 21:554–557CrossRefPubMedGoogle Scholar
  57. Stolk L, Zhai G, van Meurs JB, Verbiest MM, Visser JA, Estrada K, Rivadeneira F, Williams FM, Cherkas L, Deloukas P, Soranzo N, de Keyzer JJ, Pop VJ, Lips P, Lebrun CE, van der Schouw YT, Grobbee DE, Witteman J, Hofman A, Pols HA, Laven JS, Spector TD, Uitterlinden AG (2009) Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat GenetGoogle Scholar
  58. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Alexandersen P, Feenstra B, Boyd HA, Aben KK, Verbeek AL, Roeleveld N, Jonasdottir A, Styrkarsdottir U, Steinthorsdottir V, Karason A, Stacey SN, Gudmundsson J, Jakobsdottir M, Thorleifsson G, Hardarson G, Gulcher J, Kong A, Kiemeney LA, Melbye M, Christiansen C, Tryggvadottir L, Thorsteinsdottir U, Stefansson K (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat GenetGoogle Scholar
  59. Sundarrajan C, Liao WX, Roy AC, Ng SC (2001) Association between estrogen receptor-beta gene polymorphisms and ovulatory dysfunctions in patients with menstrual disorders. J Clin Endocrinol Metab 86:135–139CrossRefPubMedGoogle Scholar
  60. te Velde ER, Pearson PL (2002) The variability of female reproductive ageing. Hum Reprod Update 8:141–154CrossRefPubMedGoogle Scholar
  61. Tempfer CB, Riener EK, Keck C, Grimm C, Heinze G, Huber JC, Gitsch G, Hefler LA (2005) Polymorphisms associated with thrombophilia and vascular homeostasis and the timing of menarche and menopause in 728 white women. Menopause 12:325–330CrossRefPubMedGoogle Scholar
  62. Treloar SA, Martin NG (1990) Age at menarche as a fitness trait: nonadditive genetic variance detected in a large twin sample. Am J Hum Genet 47:137–148PubMedGoogle Scholar
  63. Treloar SA, Do KA, Martin NG (1998) Genetic influences on the age at menopause. Lancet 352:1084–1085CrossRefPubMedGoogle Scholar
  64. van Asselt KM, Kok HS, Peeters PH, Roest M, Pearson PL, te Velde ER, Grobbee DE, van der Schouw YT (2003) Factor V Leiden mutation accelerates the onset of natural menopause. Menopause 10:477–481CrossRefPubMedGoogle Scholar
  65. van Asselt KM, Kok HS, Putter H, Wijmenga C, Peeters PH, van der Schouw YT, Grobbee DE, te Velde ER, Mosselman S, Pearson PL (2004) Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative trait loci influencing variation in human menopausal age. Am J Hum Genet 74:444–453CrossRefPubMedGoogle Scholar
  66. van der Graaf Y, de Kleijn MJ, van der Schouw YT (1997) Menopause and cardiovascular disease. J Psychosom Obstet Gynaecol 18:113–120CrossRefPubMedGoogle Scholar
  67. van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD (1996) Age at menopause as a risk factor for cardiovascular mortality. Lancet 347:714–718CrossRefPubMedGoogle Scholar
  68. Weel AE, Uitterlinden AG, Westendorp IC, Burger H, Schuit SC, Hofman A, Helmerhorst TJ, van Leeuwen JP, Pols HA (1999) Estrogen receptor polymorphism predicts the onset of natural and surgical menopause. J Clin Endocrinol Metab 84:3146–3150CrossRefPubMedGoogle Scholar
  69. Worda C, Walch K, Sator M, Eppel W, Tempfer CB, Schneeberger C, Huber JC, Hefler LA (2004) The influence of Nos3 polymorphisms on age at menarche and natural menopause. Maturitas 49:157–162CrossRefPubMedGoogle Scholar
  70. Xita N, Tsatsoulis A, Stavrou I, Georgiou I (2005) Association of SHBG gene polymorphism with menarche. Mol Hum Reprod 11:459–462CrossRefPubMedGoogle Scholar
  71. Xu WH, Xiang YB, Ruan ZX, Zheng W, Cheng JR, Dai Q, Gao YT, Shu XO (2004) Menstrual and reproductive factors and endometrial cancer risk: results from a population-based case-control study in urban Shanghai. Int J Cancer 108:613–619CrossRefPubMedGoogle Scholar
  72. Yaich L, Dupont WD, Cavener DR, Parl FF (1992) Analysis of the PvuII restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res 52:77–83PubMedGoogle Scholar
  73. Yang F, Xiong DH, Guo Y, Shen H, Xiao P, Zhang F, Jiang H, Recker RR, Deng HW (2007) The chemokine (C-C-motif) receptor 3 (CCR3) gene is linked and associated with age at menarche in Caucasian females. Hum Genet 121:35–42CrossRefPubMedGoogle Scholar
  74. Zhao J, Xiong DH, Guo Y, Yang TL, Recker RR, Deng HW (2007) Polymorphism in the insulin-like growth factor 1 gene is associated with age at menarche in caucasian females. Hum Reprod 22:1789–1794CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chunyan He
    • 1
  • Peter Kraft
    • 2
  • Daniel I. Chasman
    • 3
  • Julie E. Buring
    • 2
    • 3
  • Constance Chen
    • 2
  • Susan E. Hankinson
    • 2
    • 4
  • Guillaume Paré
    • 3
  • Stephen Chanock
    • 5
  • Paul M. Ridker
    • 2
    • 3
  • David J. Hunter
    • 2
    • 4
    • 6
  1. 1.Department of Public HealthIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  3. 3.Donald W. Reynolds Center for Cardiovascular Research, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  5. 5.Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaUSA
  6. 6.Program in Medical and Population Genetics, Broad Institute of Harvard and MITCambridgeUSA

Personalised recommendations