Advertisement

Human Genetics

, Volume 128, Issue 4, pp 453–459 | Cite as

Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7

  • Silke Metzger
  • Meiju Saukko
  • Hong Van Che
  • Liang Tong
  • Yvonne Puder
  • Olaf Riess
  • Huu Phuc NguyenEmail author
Original Investigation

Abstract

Huntington’s disease (HD) is caused by an expansion of a polyglutamine repeat of more than 35 units in the huntingtin protein. The expanded repeat length is inversely correlated with the age at onset (AAO); however, additional genetic factors apart from the expanded CAG repeat length can modify the course and the AAO in HD. Aberrations in macroautophagy have been observed in Huntington, Alzheimer, Parkinson, motor neuron and prion diseases. Therefore, we hypothesized that polymorphisms in autophagy-related (Atg) genes might contribute to the variation in the AAO. We initially tested eight single nucleotide polymorphisms in five Atg genes (Atg3, Atg5, Atg7, Atg16L1 and Beclin-1) for their frequency of ≥1%. Subsequently, we investigated the polymorphisms Atg7 V471A and Atg16L1 T281A for a disease-modifying effect in more than 900 European HD patients (including 2 populations consisting of 346 German patients and 327 patients of Italian descent). One polymorphism in the Atg7 gene that substitutes alanine for valine (V471A) showed a significant effect on the AAO (P = 0.0050) and was associated with an earlier disease onset of 4 years. Our results further support the important pathophysiological role of autophagy in HD.

Keywords

Genetic Modifier 471A Allele Mutant Huntingtin V471A Polymorphism Atg16L1 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to the patients for participating in the study, and in particular to the following neurologists and geneticists for providing DNA samples of HD patients: F. Laccone (Department of Medical Genetics, Vienna, Austria), S. Didonato and C. Gellera (National Institute of Neurology Carlo Besta, Milano, Italy), H. W. Lange (Rehazentrum, Düsseldorf, Germany), H. Weirich-Schwaiger (Medical University of Innsbruck, Innsbruck, Austria), B. Melegh (University of Pécs, Pécs, Hungary), J. T. Epplen (University of Bochum, Germany), J. Zaremba (Institute of Psychiatry and Neurology, Warsaw, Poland), A. N. Basak (Bogazici University Bebek Istanbul, Istanbul, Turkey), J. Zidovska (University and Teaching Hospital, Prague, Czech Rebublic), M. Pandolfo (Erasme Hospital, Brussels, Belgium), L. Kadasi (Slovak Academy of Sciences, Bratislava, Slovakia), M. Kvasnicova (Department of Clinical Genetics, Banska Bystrica, Slovakia), B. H. F. Weber (University of Regensburg, Regensburg, Germany), F. Kreuz (Klinikum für Psychiatrie, Chemnitz, Germany), M. Dose (BKH-Taufkirchen, Taufkirchen, Germany) and M. Stuhrmann (University of Hannover, Hannover, Germany). Special thanks to J. Tomiuk (Department of Medical Genetics, University of Tübingen, Tübingen, Germany) for statistical advice. This study was supported by the GeNeMove Network for hereditary movement disorders (01GM0603).

Conflict of interest

None declared.

References

  1. Andresen JM, Gayán J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, US–Venezuela Collaborative Research Group, Cardon LR, Housman DE, Wexler NS (2007) Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 44:44–50CrossRefPubMedGoogle Scholar
  2. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403CrossRefPubMedGoogle Scholar
  3. Arning L, Kraus PH, Valentin S, Saft C, Andricj J, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28CrossRefPubMedGoogle Scholar
  4. Brinkman RR, Mezei MM, Theilman J, Almqvist E, Hayden MR (1997) The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 60:1202–1210PubMedGoogle Scholar
  5. den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124CrossRefGoogle Scholar
  6. Dhaenens CM, Burnouf S, Simonin C, Van Brussel E, Duhamel A, Defebvre L, Duru C, Vuillaume I, Cazeneuve C, Charles P et al (2009) A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol Dis 35:474–476CrossRefPubMedGoogle Scholar
  7. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993CrossRefPubMedGoogle Scholar
  8. Djoussé L, Knowlton B, Hayden MR, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C et al (2003) Interaction of normal and expanded repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 119:279–282CrossRefGoogle Scholar
  9. Duyao M, Ambrose C, Myers R, Noveletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392CrossRefPubMedGoogle Scholar
  10. Hayden MR (1981) Huntington’s chorea. Springer, New YorkGoogle Scholar
  11. Klionsky DJ, Ohsumi Y (1999) Vascular import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1–32CrossRefPubMedGoogle Scholar
  12. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 9:425–434CrossRefGoogle Scholar
  13. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884CrossRefPubMedGoogle Scholar
  14. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104:14489–14494CrossRefPubMedGoogle Scholar
  15. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 23:1032–1036CrossRefGoogle Scholar
  16. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42CrossRefPubMedGoogle Scholar
  17. Li SH, Li XJ (2004) Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154CrossRefPubMedGoogle Scholar
  18. Li JL, Hayden MR, Almqvist EW, Brinkman RR, Durr A, Dodé C, Morrison PJ, Suchowersky O, Ross CA, Margolis RL et al (2003) A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 73:682–687CrossRefPubMedGoogle Scholar
  19. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370CrossRefPubMedGoogle Scholar
  20. Lucotte G, Turpin JC, Riess O, Epplen JT, Siedlaczk I, Loirat F, Hazout S (1995) Confidence intervals for predicted age of onset, given the size of (CAG)n repeat, in Huntington’s disease. Hum Genet 95:231–232CrossRefPubMedGoogle Scholar
  21. Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Krüger R, Hattori N, Mellick GD, Quattrone A, Satoh J et al (2004) UCHL1 is a Parkinson’s disease susceptibility gene. Ann Neurol 55:512–521CrossRefPubMedGoogle Scholar
  22. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576CrossRefPubMedGoogle Scholar
  23. McGuire JR, Rong J, Li SH, Li XJ (2006) Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 281:3552–3559CrossRefPubMedGoogle Scholar
  24. Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C, Soliveri P, Lange HW, Weirich-Schwaiger H, Wenning GK et al (2005) The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington’s disease. Neurogenetics 7:27–30CrossRefPubMedGoogle Scholar
  25. Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C, Mariotti C, Lange HW, Weirich-Schwaiger H, Wenning GK et al (2006) Genetic analysis of candidate genes modifying the age-at-onset in Huntington’s disease. Hum Genet 120:285–292CrossRefPubMedGoogle Scholar
  26. Metzger S, Rong J, Nguyen H-P, Cape A, Tomiuk J, Soehn AS, Propping P, Freudenberg-Hua Y, Freudenberg J, Tong L et al (2008) Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease. Hum Mol Genet 17:1137–1146CrossRefPubMedGoogle Scholar
  27. Naze P, Vuillaume I, Destee A, Pasquier F, Sablonniere B (2002) Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington’s disease. Neurosci Lett 328:1–4CrossRefPubMedGoogle Scholar
  28. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117CrossRefPubMedGoogle Scholar
  29. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595CrossRefPubMedGoogle Scholar
  30. Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15:1209–1216CrossRefPubMedGoogle Scholar
  31. Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2001) Familial influence on age of onset among siblings with Huntington’s disease. Am J Med Genet 105:399–403CrossRefPubMedGoogle Scholar
  32. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111CrossRefPubMedGoogle Scholar
  33. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485CrossRefPubMedGoogle Scholar
  34. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397CrossRefPubMedGoogle Scholar
  35. Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L (2009) PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener 4:10CrossRefPubMedGoogle Scholar
  36. Taherzadeh-Fard E, Saft C, Wieczorek S, Epplen JT, Arning L (2010) Age at onset in Huntington’s disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics (Epub ahead of print)Google Scholar
  37. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239CrossRefPubMedGoogle Scholar
  38. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is unstable on Huntington’s disease chromosomes. Cell 26:971–983Google Scholar
  39. The U.S.–Venezuela Collaborative Research Project, Wexler NS (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 9:3498–3503CrossRefGoogle Scholar
  40. Verhoef LG, Lindsten K, Masucci MG, Dantuma NP (2002) Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11:2689–2700CrossRefPubMedGoogle Scholar
  41. Vuillaume I, Vermersch P, Destee A, Petit H, Sablonniere B (1998) Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 64:758–762CrossRefPubMedGoogle Scholar
  42. Walker FO (2007) Huntington’s disease. Lancet 369:218–228CrossRefPubMedGoogle Scholar
  43. Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W (2009) The gene coding for PGC-1alpha modifies age at onset in Huntington’s disease. Mol Neurodegener 4:3CrossRefPubMedGoogle Scholar
  44. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17:404–410CrossRefPubMedGoogle Scholar
  45. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32CrossRefPubMedGoogle Scholar
  46. Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133CrossRefPubMedGoogle Scholar
  47. Zühlke C, Riess O, Schröder K, Siedlaczck I, Epplen JT, Engel W, Thies U (1993) Expansion of the (CAG)n repeat causing Huntington’s disease in 352 patients of German origin. Hum Mol Genet 2:1467–1469CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Silke Metzger
    • 1
  • Meiju Saukko
    • 1
  • Hong Van Che
    • 1
  • Liang Tong
    • 2
  • Yvonne Puder
    • 1
  • Olaf Riess
    • 1
  • Huu Phuc Nguyen
    • 1
    Email author
  1. 1.Department of Medical GeneticsUniversity of TuebingenTübingenGermany
  2. 2.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations