Advertisement

Human Genetics

, Volume 127, Issue 3, pp 303–314 | Cite as

A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E

  • Manit Nuinoon
  • Wattanan Makarasara
  • Taisei Mushiroda
  • Iswari Setianingsih
  • Pustika Amalia Wahidiyat
  • Orapan Sripichai
  • Natsuhiko Kumasaka
  • Atsushi Takahashi
  • Saovaros Svasti
  • Thongperm Munkongdee
  • Surakameth Mahasirimongkol
  • Chayanon Peerapittayamongkol
  • Vip Viprakasit
  • Naoyuki Kamatani
  • Pranee Winichagoon
  • Michiaki Kubo
  • Yusuke Nakamura
  • Suthat FucharoenEmail author
Original Investigation

Abstract

β-Thalassemia/HbE disease is clinically variable. In searching for genetic factors modifying the disease severity, patients were selected based on their disease severities, and a genome-wide association study (GWAS) was performed. Genotyping was conducted with the Illumina Human 610-Quad BeadChips array using DNAs from 618 Thai β0-thalassemia/HbE patients who were classified as 383 severe and 235 mild phenotypes by a validated scoring system. Twenty-three SNPs in three independent genes/regions were identified as being significantly associated with the disease severity. The highest association was observed with SNPs in the β-globin gene cluster (chr.11p15), and rs2071348 of the HBBP1 gene revealed the most significant association [P = 2.96 × 10−13, odds ratio (OR) = 4.33 (95% confidence interval (CI), 2.74–6.84)]. The second was identified in the intergenic region between the HBS1L and MYB genes (chr.6q23), among which rs9376092 was the most significant [P = 2.36 × 10−10, OR = 3.07 (95% CI, 2.16–4.38)]. The third region was located in the BCL11A gene (chr.2p16.1), and rs766432 showed the most significant association [P = 5.87 × 10−10, OR = 3.06 (95% CI, 2.15–4.37)]. All three loci were replicated in an independent cohort of 174 Indonesian patients. The associations to fetal hemoglobin levels were also observed with SNPs on these three regions. Our data indicate that several genetic loci act in concert to influence HbF levels of β0-thalassemia/HbE patients. This study revealed that all the three reported loci and the α-globin gene locus are the best and common predictors of the disease severity in β-thalassemia.

Keywords

Thalassemia Linkage Disequilibrium Block Locus Control Region Indonesian Population Fetal Hemoglobin Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all of the patients who participated in this study, and we thank Dr. Sumonmaln Klamchuen, Nakorn Pathom Hospital; Dr. Su-on Chainunsamit, Khon Kaen Hospital; Dr. Issarang Nuchprayoon, Chulalongkorn Hospital, Dr. Leelawan Wiboonmongkol, Rachaburi Hospital; Dr. Ampaiwan Chuansumrit, Ramathibodi Hospital, Thailand for their kind support in contacting subjects. We thank Siti Ayu Putriasih from Department of Child Health Medical Faculty, University of Indonesia, Cipto Mangunkusumo National Hospital. We thank Budi Amarta Putra, Dessy Handayani, Felix Liaw from Medical Faculty University of Indonesia. We thank Ita Margaretha Nainggolan, Mewahyu Dewi, and Arleen Nugraha Suryatenggara from Eijkman Institute for Molecular Biology, Indonesia for their kind support in contacting subjects for replication study in the Indonesian population. We acknowledge the Thailand Research Fund for encouraging the study. This work was mainly supported by the DMSc-RIKEN collaboration and the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand. Additional support was provided by the Higher Education Commission, the Siriraj Graduate Thesis Scholarship and the Medical Scholar Program, Mahidol University, Thailand.

Supplementary material

439_2009_770_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1434 kb)

References

  1. Calzolari R, McMorrow T, Yannoutsos N, Langeveld A, Grosveld F (1999) Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and δβ-thalassemia affects β- but not γ-globin gene expression. EMBO J 18:949–958CrossRefPubMedGoogle Scholar
  2. Chong SS, Boehm CD, Cutting GR, Higgs DR (2000) Simplified multiplex-PCR diagnosis of common Southeast Asian deletional determinants of α-thalassemia. Clin Chem 46:1692–1695PubMedGoogle Scholar
  3. Creary LE, McKenzie CA, Menzel S, Hanchard NA, Taylor V, Hambleton I, Spector TD, Forrester TE, Thein SL (2009) Ethnic differences in F cell levels in Jamaica: a potential tool for identifying new genetic loci controlling fetal haemoglobin. Br J Haematol 144:954–960CrossRefPubMedGoogle Scholar
  4. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309CrossRefPubMedGoogle Scholar
  5. Flint J, Harding RM, Boyce AJ, Clegg JB (1998) The population genetics of the haemoglobinopathies. In: Higgs DR, Weatherall DJ (eds) Baillière’s Clinical Haematology; ‘Haemoglobinopathies’, vol 11. W.B. Saunders, London, pp 1–51Google Scholar
  6. Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P (2000) Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol Cell 5:377–386CrossRefPubMedGoogle Scholar
  7. Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA 105:11869–11874CrossRefPubMedGoogle Scholar
  8. Ma Q, Abel K, Sripichai O, Whitacre J, Angkachatchai V, Makarasara W, Winichagoon P, Fucharoen S, Braun A, Farrer LA (2007) β-globin gene cluster polymorphisms are strongly associated with severity of HbE/β0-thalassemia. Clin Genet 72:497–505PubMedCrossRefGoogle Scholar
  9. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H, Best S, Spector TD, Farrall M, Lathrop M, Thein SL (2007a) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39:1197–1199CrossRefPubMedGoogle Scholar
  10. Menzel S, Jiang J, Silver N, Gallagher J, Cunningham J, Surdulescu G, Lathrop M, Farrall M, Spector TD, Thein SL (2007b) The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood 110:3624–3626CrossRefPubMedGoogle Scholar
  11. Michelson AM (2008) Developmental biology: from genetic association to genetic switch. Science 322:1803–1804CrossRefPubMedGoogle Scholar
  12. Miles J, Mitchell JA, Chakalova L, Goyenechea B, Osborne CS, O’Neill L, Tanimoto K, Engel JD, Fraser P (2007) Intergenic transcription, cell-cycle and the developmentally regulated epigenetic profile of the human β-globin locus. PLoS ONE 2:e630CrossRefPubMedGoogle Scholar
  13. Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y (2001) A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 46:471–477CrossRefPubMedGoogle Scholar
  14. Phadke SR, Agarwal S (2003) Phenotype score to grade the severity of thalassemia intermedia. Indian J Pediatr 70:477–481CrossRefPubMedGoogle Scholar
  15. Premawardhena A, Fisher CA, Olivieri NF, de Silva S, Arambepola M, Perera W, O’Donnell A, Peto TE, Viprakasit V, Merson L, Muraca G, Weatherall DJ (2005) Haemoglobin E β-thalassaemia in Sri Lanka. Lancet 366:1467–1470CrossRefPubMedGoogle Scholar
  16. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  17. Quek Lynn, Thein SL (2007) Molecular therapies in β-thalassaemia. Br J Haematol 136:353–365CrossRefPubMedGoogle Scholar
  18. Rooks H, Bergounioux J, Game L, Close JP, Osborne C, Best S, Senior T, Height S, Thompson R, Hadzic N, Fraser P, Bolton-Maggs P, Thein SL (2005) Heterogeneity of the εγδβ-thalassaemias: characterization of three novel English deletions. Br J Haematol 128:722–729CrossRefPubMedGoogle Scholar
  19. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842CrossRefPubMedGoogle Scholar
  20. Sedgewick AE, Timofeev N, Sebastiani P, So JC, Ma ES, Chan LC, Fucharoen G, Fucharoen S, Barbosa CG, Vardarajan BN, Farrer LA, Baldwin CT, Steinberg MH, Chui DH (2008) BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies. Blood Cells Mol Dis 41:255–258CrossRefPubMedGoogle Scholar
  21. Sripichai O, Makarasara W, Munkongdee T, Kumkhaek C, Nuchprayoon I, Chuansumrit A, Chuncharunee S, Chantrakoon N, Boonmongkol P, Winichagoon P, Fucharoen S (2008a) A scoring system for the classification of β-thalassemia/Hb E disease severity. Am J Hematol 83:482–484CrossRefPubMedGoogle Scholar
  22. Sripichai O, Munkongdee T, Kumkhaek C, Svasti S, Winichagoon P, Fucharoen S (2008b) Coinheritance of the different copy numbers of α-globin gene modifies severity of β-thalassemia/Hb E disease. Ann Hematol 87:375–379CrossRefPubMedGoogle Scholar
  23. Sutton M, Bouhassira EE, Nagel RL (1989) Polymerase chain reaction amplification applied to the determination of β-like globin gene cluster haplotypes. Am J Hematol 32:66–69CrossRefPubMedGoogle Scholar
  24. Thein SL (2005) Genetic modifiers of β-thalassemia. Haematologica 90:649–660PubMedGoogle Scholar
  25. Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M (2007) Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA 104:11346–11351CrossRefPubMedGoogle Scholar
  26. Wahlberg K, Jiang J, Rooks H, Jawaid K, Matsuda F, Yamaguchi M, Lathrop M, Thein SL, Best S (2009) The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 114:1254–1262CrossRefPubMedGoogle Scholar
  27. Weatherall DJ (1998) Hemoglobin E-β-thalassemia: an increasingly common disease with some diagnostic pitfalls. J Pediatr 132:765–767CrossRefPubMedGoogle Scholar
  28. Winichagoon P, Thonglairoam V, Fucharoen S, Wilairat P, Fukumaki Y, Wasi P (1993) Severity differences in β-thalassaemia/haemoglobin E syndromes: implication of genetic factors. Br J Haematol 83:633–639CrossRefPubMedGoogle Scholar
  29. Winichagoon P, Saechan V, Sripanich R, Nopparatana C, Kanokpongsakdi S, Maggio A, Fucharoen S (1999) Prenatal diagnosis of β-thalassaemia by reverse dot-blot hybridization. Prenat Diagn 19:428–435CrossRefPubMedGoogle Scholar
  30. Winichagoon P, Fucharoen S, Chen P, Wasi P (2000) Genetic factors affecting clinical severity in β-thalassemia syndromes. J Pediatr Hematol Oncol 22:573–580CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Manit Nuinoon
    • 1
    • 2
    • 3
  • Wattanan Makarasara
    • 1
    • 2
    • 3
    • 4
  • Taisei Mushiroda
    • 5
  • Iswari Setianingsih
    • 6
  • Pustika Amalia Wahidiyat
    • 7
  • Orapan Sripichai
    • 1
  • Natsuhiko Kumasaka
    • 4
  • Atsushi Takahashi
    • 4
  • Saovaros Svasti
    • 1
  • Thongperm Munkongdee
    • 1
    • 3
  • Surakameth Mahasirimongkol
    • 8
  • Chayanon Peerapittayamongkol
    • 3
  • Vip Viprakasit
    • 9
  • Naoyuki Kamatani
    • 4
  • Pranee Winichagoon
    • 1
  • Michiaki Kubo
    • 10
  • Yusuke Nakamura
    • 2
    • 11
  • Suthat Fucharoen
    • 1
    Email author
  1. 1.Thalassemia Research Center, Institute of Molecular BiosciencesMahidol UniversityPhutthamonthonThailand
  2. 2.Laboratory for International AllianceRIKEN Center for Genomic MedicineYokohamaJapan
  3. 3.Department of Biochemistry, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  4. 4.Laboratory of Statistical AnalysisRIKEN Center for Genomic MedicineTokyoJapan
  5. 5.Laboratory for PharmacogeneticsRIKEN Center for Genomic MedicineYokohamaJapan
  6. 6.The Eijkman Institute for Molecular BiologyJakartaIndonesia
  7. 7.Haematology Division, Child Health DepartmentUniversity of Indonesia, Cipto Mangunkusumo HospitalJakartaIndonesia
  8. 8.Center for International Cooperation, Department of Medical SciencesMinistry of Public HealthNonthaburiThailand
  9. 9.Department of Pediatrics, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  10. 10.Laboratory for GenotypingRIKEN Center for Genomic MedicineYokohamaJapan
  11. 11.Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations