Human Genetics

, Volume 126, Issue 6, pp 819–831 | Cite as

Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing

  • Kate V. EverettEmail author
  • Barry A. Chioza
  • Christina Georgoula
  • Ashley Reece
  • R. Mark Gardiner
  • Eddie M. K. Chung
Original Investigation


Infantile hypertrophic pyloric stenosis (IHPS) is the most common inherited form of gastrointestinal obstruction in infancy with a striking male preponderance. Infants present with vomiting due to gastric outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. Two loci specific to extended pedigrees displaying autosomal dominant inheritance have been identified. A genome scan identified loci on chromosomes 11q14–q22 and Xq23–q24 which are predicted to be responsible for a subset of smaller families with IHPS demonstrating non-Mendelian inheritance. The two linked chromosomal regions both harbour functional candidate genes which are members of the canonical transient receptor potential (TRPC) family of ion channels. Both TRPC5 (Xq23–q24) and TRPC6 (11q14–q22) have a potential role in smooth muscle control and hypertrophy. Here, we report suggestive evidence for a third locus on chromosome 3q12–q25 (Z max = 2.7, p < 0.004), a region which harbours a third TRPC gene, TRPC1. Fine mapping of all three genes using a tagSNP approach and re-sequencing identified a SNP in the promoter region of TRPC6 and a missense variant in exon 4 of TRPC6 which may be putative causal variants.


Causal Variant Linkage Disequilibrium Block Gastric Outlet Obstruction Canonical Transient Receptor Potential Transmission Disequilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Newlife Foundation and Action Medical Research. We are very grateful to all the families that participated in this study. We would like to thank Professors Prem Puri and Agostino Pierro, Dr Sally Mitton, and Mrs Cathy Cord-Udy as well as K. Rogers, N. Johnson, A. Massoud and J. Mulligan for their contribution to the family ascertainment effort. We would like to thank K. Parker for technical assistance and H. Mitchison for critical assessment of the manuscript.


  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101CrossRefPubMedGoogle Scholar
  2. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  3. Brouwers AG, Waals-van de Wal CM (2009) Hypertrophic pyloric stenosis and pulmonary hypertension in a neonate. A common mechanism? Acta Paediatr 98:1064–1065Google Scholar
  4. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496CrossRefPubMedGoogle Scholar
  5. Capon F, Reece A, Ravindrarajah R, Chung E (2006) Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16p12–p13 and evidence for genetic heterogeneity. Am J Hum Genet 79:378–382CrossRefPubMedGoogle Scholar
  6. Carter CO (1961) The inheritance of congenital pyloric stenosis. Br Med Bull 17:251–254PubMedGoogle Scholar
  7. Carter CO, Powell BW (1954) Two-generation pyloric stenosis. Lancet 266:746–748CrossRefPubMedGoogle Scholar
  8. Choi JW, Park CS, Hwang M, Nam HY, Chang HS, Park SG, Han BG, Kimm K, Kim HL, Oh B, Kim Y (2008) A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J Allergy Clin Immunol 122:1119–1126CrossRefPubMedGoogle Scholar
  9. Chung E, Curtis D, Chen G, Marsden PA, Twells R, Xu W, Gardiner M (1996) Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis. Am J Hum Genet 58:363–370PubMedGoogle Scholar
  10. Chung RH, Hauser ER, Martin ER (2006) The APL test: extension to general nuclear families and haplotypes and examination of its robustness. Hum Hered 61:189–199CrossRefPubMedGoogle Scholar
  11. Chung RH, Morris RW, Zhang L, Li YJ, Martin ER (2007) X-APL: an improved family-based test of association in the presence of linkage for the X chromosome. Am J Hum Genet 80:59–68CrossRefPubMedGoogle Scholar
  12. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223CrossRefPubMedGoogle Scholar
  13. Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760CrossRefPubMedGoogle Scholar
  14. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463CrossRefPubMedGoogle Scholar
  15. Everett KV, Capon F, Georgoula C, Chioza BA, Reece A, Jaswon M, Pierro A, Puri P, Gardiner RM, Chung EM (2008a) Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16q24. Eur J Hum Genet 16:1151–1154CrossRefPubMedGoogle Scholar
  16. Everett KV, Chioza BA, Georgoula C, Reece A, Capon F, Parker KA, Cord-Udy C, McKeigue P, Mitton S, Pierro A, Puri P, Mitchison HM, Chung EM, Gardiner RM (2008b) Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14–q22 and Xq23. Am J Hum Genet 82:756–762CrossRefPubMedGoogle Scholar
  17. Finsen VR (1979) Infantile hypertrophic pyloric stenosis—unusual familial incidence. Arch Dis Child 54:720–721CrossRefPubMedGoogle Scholar
  18. Fried K, Aviv S, Nisenbaum C (1981) Probable autosomal dominant infantile pyloric stenosis in a large kindred. Clin Genet 20:328–330PubMedCrossRefGoogle Scholar
  19. Heller A, Seidel J, Hubler A, Starke H, Beensen V, Senger G, Rocchi M, Wirth J, Chudoba I, Claussen U, Liehr T (2000) Molecular cytogenetic characterisation of partial trisomy 9q in a case with pyloric stenosis and a review. J Med Genet 37:529–532CrossRefPubMedGoogle Scholar
  20. Hodgson SV, Berry AC, Dunbar HM (1995) Two brothers with an unbalanced 8;17 translocation and infantile pyloric stenosis. Clin Genet 48:328–330PubMedGoogle Scholar
  21. Hohoff C, Neumann A, Domschke K, Jacob C, Maier W, Fritze J, Bandelow B, Krakowitzky P, Rothermundt M, Arolt V, Deckert J (2008) Association analysis of Rgs7 variants with panic disorder. J Neural Transm (submitted)Google Scholar
  22. Huang CL (2004) The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 15:1690–1699CrossRefPubMedGoogle Scholar
  23. Jackson L, Kline AD, Barr MA, Koch S (1993) de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet 47:940–946CrossRefPubMedGoogle Scholar
  24. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247CrossRefPubMedGoogle Scholar
  25. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616PubMedGoogle Scholar
  26. Liu CK, Chen YH, Tang CY, Chang SC, Lin YJ, Tsai MF, Chen YT, Yao A (2008) Functional analysis of novel SNPs and mutations in human and mouse genomes. BMC Bioinform 9(Suppl 12):S10CrossRefGoogle Scholar
  27. MacMahon B (2006) The continuing enigma of pyloric stenosis of infancy: a review. Epidemiology 17:195–201CrossRefPubMedGoogle Scholar
  28. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185CrossRefPubMedGoogle Scholar
  29. Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67:146–154CrossRefPubMedGoogle Scholar
  30. Martin ER, Bass MP, Kaplan NL (2001) Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 68:1065–1067CrossRefPubMedGoogle Scholar
  31. Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73:1016–1026CrossRefPubMedGoogle Scholar
  32. Mitchell LE, Risch N (1993) The genetics of infantile hypertrophic pyloric stenosis. A reanalysis. Am J Dis Child 147:1203–1211PubMedGoogle Scholar
  33. Moller CC, Mangos S, Drummond IA, Reiser J (2008) Expression of trpC1 and trpC6 orthologs in zebrafish. Gene Expr Patterns 8:291–296CrossRefPubMedGoogle Scholar
  34. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3Google Scholar
  35. Murtagh K, Perry P, Corlett M, Fraser I (1992) Infantile hypertrophic pyloric stenosis. Dig Dis 10:190–198CrossRefPubMedGoogle Scholar
  36. Ott J (1989) Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 86:4175–4178CrossRefPubMedGoogle Scholar
  37. Oue T, Puri P (1999) Smooth muscle cell hypertrophy versus hyperplasia in infantile hypertrophic pyloric stenosis. Pediatr Res 45:853–857CrossRefPubMedGoogle Scholar
  38. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69:124–137CrossRefPubMedGoogle Scholar
  39. Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease-common variant or not? Hum Mol Genet 11:2417–2423CrossRefPubMedGoogle Scholar
  40. Raponi M, Upadhyaya M, Baralle D (2006) Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat 27:294–295CrossRefPubMedGoogle Scholar
  41. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109:95–104CrossRefPubMedGoogle Scholar
  42. Saur D, Vanderwinden JM, Seidler B, Schmid RM, De Laet MH, Allescher HD (2004) Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci USA 101:1662–1667CrossRefPubMedGoogle Scholar
  43. Schechter R, Torfs CP, Bateson TF (1997) The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol 11:407–427CrossRefPubMedGoogle Scholar
  44. Smith DW, Lemli L, Opitz JM (1964) A newly recognised syndrome of multiple congenital anomalies. J Pediatr 64:210–217CrossRefPubMedGoogle Scholar
  45. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591CrossRefPubMedGoogle Scholar
  46. Tremblay K, Daley D, Chamberland A, Lemire M, Montpetit A, Laviolette M, Musk AW, James AL, Chan-Yeung M, Becker A, Kozyrskyj AL, Sandford AJ, Hudson TJ, Pare PD, Laprise C (2008) Genetic variation in immune signaling genes differentially expressed in asthmatic lung tissues. J Allergy Clin Immunol 122:529–536CrossRefPubMedGoogle Scholar
  47. Wang N, Akey JM, Zhang K, Chakraborty R, Jin L (2002) Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71:1227–1234CrossRefPubMedGoogle Scholar
  48. Weeks DE, Ott J, Lathrop GM (1990) SLINK: a general simulation program for linkage analysis. Am J Hum Genet 47(Suppl). A204Google Scholar
  49. Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127CrossRefPubMedGoogle Scholar
  50. Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866CrossRefPubMedGoogle Scholar
  51. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kate V. Everett
    • 1
    Email author
  • Barry A. Chioza
    • 1
  • Christina Georgoula
    • 1
  • Ashley Reece
    • 1
  • R. Mark Gardiner
    • 1
  • Eddie M. K. Chung
    • 1
  1. 1.Molecular Medicine UnitUniversity College London Institute of Child HealthLondonUK

Personalised recommendations