Human Genetics

, 126:605

Application of serial analysis of gene expression to the study of human genetic disease

Review Article


Sequence tag analysis using serial analysis of gene expression (SAGE) is a powerful strategy for the quantitative analysis of gene expression in human genetic disorders. SAGE facilitates the measurement of mRNA transcripts and generates a non-biased gene expression profile of normal and pathological disease tissue. In addition, the SAGE technique has the capacity of detecting the expression of novel transcripts allowing for the identification of previously uncharacterised genes, thus providing a unique advantage over the traditional microarray-based approach for expression profiling. The technique has been successful in providing pathological gene expression profiles in a number of common genetic disorders including diabetes, cardiovascular disease, Parkinson disease and Down syndrome. When combined with next generation sequencing platforms, SAGE has the potential to become a more powerful and sensitive technique making it more amenable for diagnostic use. This review will therefore discuss the application of SAGE to several common genetic disorders and will further evaluate its potential use in diagnosing human genetic disease.


  1. Alonso-Montes C, Castro MG, Reguero JR, Perrot A, Ozcelik C, Geier C, Posch MG, Morís C, Alvarez V, Ruiz-Ortega M, Coto E (2008) Mitochondrial transcription factors TFA, TFB1 and TFB2: a search for DNA variants/haplotypes and the risk of cardiac hypertrophy. Dis Markers 25(3):131–139PubMedGoogle Scholar
  2. Alvarez H, Corvalan A, Roa JC, Argani P, Murillo F, Edwards J, Beaty R, Feldmann G, Hong SM, Mullendore M, Roa I, Ibañez L, Pimentel F, Diaz A, Riggins GJ, Maitra A (2008) Serial analysis of gene expression identifies connective tissue growth factor expression as a prognostic biomarker in gallbladder cancer. Clin Cancer Res 14(9):2631–2638CrossRefPubMedGoogle Scholar
  3. Anderson LR, Betarbet R, Gearing M, Gulcher J, Hicks AA, Stefánsson K, Lah JJ, Levey AI (2007) PARK10 candidate RNF11 is expressed by vulnerable neurons and localizes to Lewy bodies in Parkinson disease brain. J Neuropathol Exp Neurol 66(10):955–964CrossRefPubMedGoogle Scholar
  4. Anisimov SV, Tarasov KV, Stern MD, Lakatta EG, Boheler KR (2002a) A quantitative and validated SAGE transcriptome reference for adult mouse heart. Genomics 80(2):213–222CrossRefPubMedGoogle Scholar
  5. Anisimov SV, Tarasov KV, Riordon D, Wobus AM, Boheler KR (2002b) SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mech Dev 117(1–2):25–74CrossRefPubMedGoogle Scholar
  6. Aponso PM, Faull RL, Connor B (2008) Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 151(4):1142–1153CrossRefPubMedGoogle Scholar
  7. Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, Delaney A, Griffith M, Hickenbotham M, Magrini V, Mardis ER, Sadar MD, Siddiqui AS, Marra MA, Jones SJ (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7:246CrossRefPubMedGoogle Scholar
  8. Barnes BR, Marklund S, Steiler TL, Walter M, Hjälm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L (2004) The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279(37):38441–38447CrossRefPubMedGoogle Scholar
  9. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259CrossRefPubMedGoogle Scholar
  10. Boon A, Lodder J, Heuts-van Raak L, Kessels F (1994) Silent brain infarcts in 755 consecutive patients with a first-ever supratentorial ischemic stroke. Relationship with index-stroke subtype, vascular risk factors, and mortality. Stroke 25(12):2384–2390PubMedGoogle Scholar
  11. Boon K, Bailey NW, Yang J, Steel MP, Groshong S, Kervitsky D, Brown KK, Schwarz MI, Schwartz DA (2009) Molecular phenotypes distinguish patients with relatively stable from progressive idiopathic pulmonary fibrosis (IPF). PLoS ONE 4(4):e5134CrossRefPubMedGoogle Scholar
  12. Bowes Rickman C, Ebright JN, Zavodni ZJ, Yu L, Wang T, Daiger SP, Wistow G, Boon K, Hauser MA (2006) Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE. Invest Ophthalmol Vis Sci 47(6):2305–2316CrossRefPubMedGoogle Scholar
  13. Brochier C, Gaillard MC, Diguet E, Caudy N, Dossat C, Ségurens B, Wincker P, Roze E, Caboche J, Hantraye P, Brouillet E, Elalouf JM, de Chaldée M (2008) Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics 33(2):170–179CrossRefPubMedGoogle Scholar
  14. Buimer M, Keijser R, Jebbink JM, Wehkamp D, van Kampen AH, Boer K, van der Post JA, Ris-Stalpers C (2008) Seven placental transcripts characterize HELLP-syndrome. Placenta 29(5):444–453CrossRefPubMedGoogle Scholar
  15. Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7:272CrossRefPubMedGoogle Scholar
  16. Cras-Méneur C, Inoue H, Zhou Y, Ohsugi M, Bernal-Mizrachi E, Pape D, Clifton SW, Permutt MA (2004) An expression profile of human pancreatic islet mRNAs by Serial Analysis of Gene Expression (SAGE). Diabetologia 47(2):284–299CrossRefPubMedGoogle Scholar
  17. de Waard V, van den Berg BM, Veken J, Schultz-Heienbrok R, Pannekoek H, van Zonneveld AJ (1999) Serial analysis of gene expression to assess the endothelial cell response to an atherogenic stimulus. Gene 226(1):1–8CrossRefPubMedGoogle Scholar
  18. Duka A, Schwartz F, Duka I, Johns C, Melista E, Gavras I, Gavras H (2006) A novel gene (Cmya3) induced in the heart by angiotensin II-dependent but not salt-dependent hypertension in mice. Am J Hypertens 19(3):275–281CrossRefPubMedGoogle Scholar
  19. Egidy G, Julé S, Bossé P, Bernex F, Geffrotin C, Vincent-Naulleau S, Horak V, Sastre-Garau X, Panthier JJ (2008) Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer 7:34CrossRefPubMedGoogle Scholar
  20. El-Meanawy MA, Schelling JR, Pozuelo F, Churpek MM, Ficker EK, Iyengar S, Sedor JR (2000) Use of serial analysis of gene expression to generate kidney expression libraries. Am J Physiol Renal Physiol 279(2):F383–F392PubMedGoogle Scholar
  21. Epstein CJ, Korenberg JR, Annerén G, Antonarakis SE, Aymé S, Courchesne E, Epstein LB, Fowler A, Groner Y, Huret JL et al (1991) Protocols to establish genotype-phenotype correlations in Down syndrome. Am J Hum Genet 49(1):207–235PubMedGoogle Scholar
  22. Flossmann E, Rothwell PM (2005) Family history of stroke in patients with transient ischemic attack in relation to hypertension and other intermediate phenotypes. Stroke 36(4):830–835CrossRefPubMedGoogle Scholar
  23. Garcia-Roves PM, Osler ME, Holmström MH, Zierath JR (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283(51):35724–35734CrossRefPubMedGoogle Scholar
  24. Gasser T (2009) Mendelian forms of Parkinson’s disease. Biochim Biophys Acta (epub ahead of print)Google Scholar
  25. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF (2003) Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 101(6):2285–2293CrossRefPubMedGoogle Scholar
  26. Hashimoto S, Qu W, Ahsan B, Ogoshi K, Sasaki A, Nakatani Y, Lee Y, Ogawa M, Ametani A, Suzuki Y, Sugano S, Lee CC, Nutter RC, Morishita S, Matsushima K (2009) High-resolution analysis of the 5′-end transcriptome using a next generation DNA sequencer. PLoS ONE 4(1):e4108CrossRefPubMedGoogle Scholar
  27. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413(6852):179–183CrossRefPubMedGoogle Scholar
  28. Honda H, Barrueto FF, Gogusev J, Im DD, Morin PJ (2008) Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 6:59CrossRefPubMedGoogle Scholar
  29. Horan M, Newsway V, Yasmin, Lewis MD, Easter TE, Rees DA, Mahto A, Millar DS, Procter AM, Scanlon MF, Wilkinson IB, Hall IP, Wheatley A, Blakey J, Bath PM, Cockcroft JR, Krawczak M, Cooper DN (2006) Genetic variation at the growth hormone (GH1) and growth hormone receptor (GHR) loci as a risk factor for hypertension and stroke. Hum Genet 119(5):527–540CrossRefPubMedGoogle Scholar
  30. Hornykiewicz O (1979) Dopamine in Parkinson’s disease and other neurological disturbances. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic press, New York, pp 633–654Google Scholar
  31. Horvath A, Mathyakina L, Vong Q, Baxendale V, Pang AL, Chan WY, Stratakis CA (2006) Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 91(2):584–596CrossRefPubMedGoogle Scholar
  32. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948CrossRefPubMedGoogle Scholar
  33. Imoto K, Kukidome D, Nishikawa T, Matsuhisa T, Sonoda K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Tsuruzoe K, Matsumura T, Ichijo H, Araki E (2006) Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 55(5):1197–1204CrossRefPubMedGoogle Scholar
  34. Ingelsson E, Bennet L, Ridderstråle M, Söderström M, Råstam L, Lindblad U (2008) The PPARGC1A Gly482Ser polymorphism is associated with left ventricular diastolic dysfunction in men. BMC Cardiovasc Disord 8:37CrossRefPubMedGoogle Scholar
  35. Ishii M, Hashimoto S, Tsutsumi S, Wada Y, Matsushima K, Kodama T, Aburatani H (2000) Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68(2):136–143CrossRefPubMedGoogle Scholar
  36. Jiang C, Lu H, Vincent KA, Shankara S, Belanger AJ, Cheng SH, Akita GY, Kelly RA, Goldberg MA, Gregory RJ (2002) Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1 alpha. Physiol Genomics 8(1):23–32PubMedGoogle Scholar
  37. Kieffer N, Guichard J, Farcet JP, Vainchenker W, Breton-Gorius J (1987) Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem 164(1):189–195CrossRefPubMedGoogle Scholar
  38. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608CrossRefPubMedGoogle Scholar
  39. Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M (2004) PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 10(5):530–534CrossRefPubMedGoogle Scholar
  40. Lai CQ, Tucker KL, Parnell LD, Adiconis X, García-Bailo B, Griffith J, Meydani M, Ordovás JM (2008) PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: the Boston Puerto Rican Health Study. Diabetes. 57(4):809–816CrossRefPubMedGoogle Scholar
  41. Lautier C, Goldwurm S, Dürr A, Giovannone B, Tsiaras WG, Pezzoli G, Brice A, Smith RJ (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet 82(4):822–833CrossRefPubMedGoogle Scholar
  42. Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33(1):85–89CrossRefPubMedGoogle Scholar
  43. Lee S, Chen J, Zhou G, Shi RZ, Bouffard GG, Kocherginsky M, Ge X, Sun M, Jayathilaka N, Kim YC, Emmanuel N, Bohlander SK, Minden M, Kline J, Ozer O, Larson RA, LeBeau MM, Green ED, Trent J, Karrison T, Liu PP, Wang SM, Rowley JD (2006) Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc Natl Acad Sci USA 103(4):1030–1035CrossRefPubMedGoogle Scholar
  44. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA Jr, Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-Vance MA (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70(4):985–993CrossRefPubMedGoogle Scholar
  45. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387CrossRefPubMedGoogle Scholar
  46. Lupien CB, Bolduc C, Landreville S, Salesse C (2007) Comparison between the gene expression profile of human Müller cells and two spontaneous Müller cell lines. Invest Ophthalmol Vis Sci 48(11):5229–5242CrossRefPubMedGoogle Scholar
  47. Malagó W Jr, Sommer CA, Del Cistia Andrade C, Soares-Costa A, Abrao Possik P, Cassago A, Santejo Silveira HC, Henrique-Silva F (2005) Gene expression profile of human Down syndrome leukocytes. Croat Med J 46(4):647–656PubMedGoogle Scholar
  48. Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115(Pt 2):333–342CrossRefPubMedGoogle Scholar
  49. Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81(5):457–467CrossRefPubMedGoogle Scholar
  50. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefPubMedGoogle Scholar
  51. Matsumura H, Krüger DH, Kahl G, Terauchi R (2008) SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 9(5):368–374CrossRefPubMedGoogle Scholar
  52. Matsunaga T, Gu N, Yamazaki H, Tsuda M, Adachi T, Yasuda K, Moritani T, Tsuda K, Nonaka M, Nishiyama T (2009) Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 27(2):305–313CrossRefPubMedGoogle Scholar
  53. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6(1):87–97CrossRefPubMedGoogle Scholar
  54. Minagawa H, Yamashita T, Honda M, Tabuse Y, Kamijo K, Tsugita A, Kaneko S (2008) Comparative analysis of proteome and transcriptome in human hepatocellular carcinoma using 2D-DIGE and SAGE. Protein J 27(7–8):409–419CrossRefPubMedGoogle Scholar
  55. Misu H, Takamura T, Matsuzawa N, Shimizu A, Ota T, Sakurai M, Ando H, Arai K, Yamashita T, Honda M, Yamashita T, Kaneko S (2007) Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia 50(2):268–277CrossRefPubMedGoogle Scholar
  56. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273CrossRefPubMedGoogle Scholar
  57. Myerowitz R, Mizukami H, Richardson KL, Finn LS, Tifft CJ, Proia RL (2004) Global gene expression in a type 2 Gaucher disease brain. Mol Genet Metab 83(4):288–296CrossRefPubMedGoogle Scholar
  58. Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59(21):5464–5470PubMedGoogle Scholar
  59. Newman PJ, Gorski J, White GC 2nd, Gidwitz S, Cretney CJ, Aster RH (1988) Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest 82(2):739–743CrossRefPubMedGoogle Scholar
  60. Noureddine MA, Li YJ, van der Walt JM, Walters R, Jewett RM, Xu H, Wang T, Walter JW, Scott BL, Hulette C, Schmechel D, Stenger JE, Dietrich F, Vance JM, Hauser MA (2005) Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov Disord 20(10):1299–1309CrossRefPubMedGoogle Scholar
  61. Pacholsky D, Vakeel P, Himmel M, Löwe T, Stradal T, Rottner K, Fürst DO, van der Ven PF (2004) Xin repeats define a novel actin-binding motif. J Cell Sci 117(Pt 22):5257–5268CrossRefPubMedGoogle Scholar
  62. Patino WD, Kang JG, Matoba S, Mian OY, Gochuico BR, Hwang PM (2006) Atherosclerotic plaque macrophage transcriptional regulators are expressed in blood and modulated by tristetraprolin. Circ Res 98(10):1282–1289CrossRefPubMedGoogle Scholar
  63. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100(14):8466–8471CrossRefPubMedGoogle Scholar
  64. Pauws E, Moreno JC, Tijssen M, Baas F, de Vijlder JJ, Ris-Stalpers C (2000) Serial analysis of gene expression as a tool to assess the human thyroid expression profile and to identify novel thyroidal genes. J Clin Endocrinol Metab 85(5):1923–1927CrossRefPubMedGoogle Scholar
  65. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease Science 276(5321):2045–2047Google Scholar
  66. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286(5443):1368–1371CrossRefPubMedGoogle Scholar
  67. Raftery MJ, Möncke-Buchner E, Matsumura H, Giese T, Winkelmann A, Reuter M, Terauchi R, Schönrich G, Krüger DH (2009) Unravelling the interaction of HCMV with dendritic cells using SuperSAGE. J Gen Virol (epub ahead of print)Google Scholar
  68. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191CrossRefPubMedGoogle Scholar
  69. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23(1):55–63CrossRefPubMedGoogle Scholar
  70. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512CrossRefPubMedGoogle Scholar
  71. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806CrossRefPubMedGoogle Scholar
  72. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145CrossRefPubMedGoogle Scholar
  73. Schulz UG, Flossmann E, Rothwell PM (2004) Heritability of ischemic stroke in relation to age, vascular risk factors, and subtypes of incident stroke in population-based studies. Stroke. 35(4):819–824CrossRefPubMedGoogle Scholar
  74. Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Masterman D, Mastaglia F, Laing NG, Stajich JM, Slotterbeck B, Booze MW, Ribble RC, Rampersaud E, West SG, Gibson RA, Middleton LT, Roses AD, Haines JL, Scott BL, Vance JM, Pericak-Vance MA (2001) Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 286(18):2239–2244CrossRefPubMedGoogle Scholar
  75. Shadeo A, Chari R, Vatcher G, Campbell J, Lonergan KM, Matisic J, van Niekerk D, Ehlen T, Miller D, Follen M, Lam WL, MacAulay C (2007) Comprehensive serial analysis of gene expression of the cervical transcriptome. BMC Genomics 8:142CrossRefPubMedGoogle Scholar
  76. Shashkin PN, Jain N, Miller YI, Rissing BA, Huo Y, Keller SR, Vandenhoff GE, Nadler JL, McIntyre TM (2006) Insulin and glucose play a role in foam cell formation and function. Cardiovasc Diabetol 5:13CrossRefPubMedGoogle Scholar
  77. Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM, Henrique-Silva F (2008) Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome 51(1):19–29CrossRefPubMedGoogle Scholar
  78. Takamura T, Misu H, Yamashita T, Kaneko S (2008) SAGE application in the study of diabetes. Curr Pharm Biotechnol 9(5):392–399CrossRefPubMedGoogle Scholar
  79. Tanira MO, Al Balushi KA (2005) Genetic variations related to hypertension: a review. J Hum Hypertens 19(1):7–19CrossRefPubMedGoogle Scholar
  80. Torres TT, Metta M, Ottenwälder B, Schlötterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18(1):172–177CrossRefPubMedGoogle Scholar
  81. Uno K, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Imai J, Hasegawa Y, Gao J, Kaneko K, Iwasaki H, Ishihara H, Sasano H, Inukai K, Mizuguchi H, Asano T, Shiota M, Nakazato M, Oka Y (2006) Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312(5780):1656–1659CrossRefPubMedGoogle Scholar
  82. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160CrossRefPubMedGoogle Scholar
  83. van der Feen C, Neijens FS, Kanters SD, Mali WP, Stolk RP, Banga JD (2002) Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes. Diabet Med 19(5):366–370CrossRefPubMedGoogle Scholar
  84. van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Haines JL, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Stajich JM, McLaurin AC, Middleton LT, Scott BL, Schmechel DE, Pericak-Vance MA, Vance JM (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72(4):804–811CrossRefPubMedGoogle Scholar
  85. van Ruissen F, Schaaf GJ, Kool M, Baas F, Ruijter JM (2008) Scaling of gene expression data allowing the comparison of different gene expression platforms. Methods Mol Biol 387:169–183CrossRefPubMedGoogle Scholar
  86. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487CrossRefPubMedGoogle Scholar
  87. Voth H, Oberthuer A, Simon T, Kahlert Y, Berthold F, Fischer M (2007) Identification of DEIN, a novel gene with high expression levels in stage IVS neuroblastoma. Mol Cancer Res 5(12):1276–1284CrossRefPubMedGoogle Scholar
  88. Wang DZ, Reiter RS, Lin JL, Wang Q, Williams HS, Krob SL, Schultheiss TM, Evans S, Lin JJ (1999) Requirement of a novel gene, Xin, in cardiac morphogenesis. Development 126(6):1281–1294PubMedGoogle Scholar
  89. Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144(1):32–42CrossRefPubMedGoogle Scholar
  90. Wehrwein G, Neumeier M, Schäffler A, Kopp A, Weigert J, Abke S, Schölmerich J, Buechler C (2006) Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes. Cardiovasc Diabetol 5:5CrossRefPubMedGoogle Scholar
  91. Xu PT, Li YJ, Qin XJ, Kroner C, Green-Odlum A, Xu H, Wang TY, Schmechel DE, Hulette CM, Ervin J, Hauser M, Haines J, Pericak-Vance MA, Gilbert JR (2007) A SAGE study of apolipoprotein E3/3, E3/4 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Mol Cell Neurosci 36(3):313–331CrossRefPubMedGoogle Scholar
  92. Yamashita T, Hashimoto S, Kaneko S, Nagai S, Toyoda N, Suzuki T, Kobayashi K, Matsushima K (2000) Comprehensive gene expression profile of a normal human liver. Biochem Biophys Res Commun 269(1):110–116CrossRefPubMedGoogle Scholar
  93. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, Brennan C, Polyak K (2006) Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66(8):4065–4078CrossRefPubMedGoogle Scholar
  94. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138CrossRefPubMedGoogle Scholar
  95. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.University of NewcastleCallaghanAustralia

Personalised recommendations