Human Genetics

, 126:629 | Cite as

The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample

  • Meliha Karsak
  • Ida Malkin
  • Mohammad R. Toliat
  • Christian Kubisch
  • Peter Nürnberg
  • Andreas Zimmer
  • Gregory Livshits
Original Investigation

Abstract

Genetic variants within the CNR2 gene encoding the cannabinoid receptor CB2 have been shown to be associated with osteoporosis and low bone mineral density (BMD) in case-control studies. We now examined the association of polymorphisms in CNR2 with hand bone strength in an ethnically homogeneous healthy family sample of European origin (Chuvashians) living in Russia. We show that non-synonymous CNR2 SNPs are significantly associated with radiographic hand BMD and breaking bending resistance index (BBRI) by two different transmission disequilibrium tests. For both tests highly significant p values (ranging from 0.007 to 0.008 for hand BMD, and from 0.001 to 0.003 for BBRI) were also obtained with additional SNPs at the CNR2 locus. The associations remained significant after correction for multiple testing. In conclusion, in addition to the association of CNR2 polymorphisms with low BMD at selected clinically relevant skeletal sites, we now report their significant association with hand bone strength phenotypes using a family-based study design implying an even broader impact of genetic variation at the CNR2 locus on bone structure and function.

Supplementary material

439_2009_708_MOESM1_ESM.doc (200 kb)
Supplementary material 1 (DOC 200 kb)

References

  1. Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292CrossRefPubMedGoogle Scholar
  2. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  3. Bouxsein ML, Michaeli DA, Plass DB, Schick DA, Melton ME (1997) Precision and accuracy of computed digital absorptiometry for assessment of bone density of the hand. Osteoporos Int 7:444–449CrossRefPubMedGoogle Scholar
  4. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMedGoogle Scholar
  5. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nat Genet 39:1202–1207CrossRefPubMedGoogle Scholar
  6. El’chinova GI, Roshchina Iu V, Zinchenko RA, Zinchenko SP, Ginter EK (2002) Population genetic study of the Alatyr region of the Republic of Chuvashiia. Genetika 38:251–258PubMedGoogle Scholar
  7. Elliot JR, Fenton AJ, Young T, Mansfield A, Burton C, Wilkinson TJ (2005) The precision of digital X-ray radiogrammetry compared with DXA in subjects with normal bone density or osteoporosis. J Clin Densitom 8:187–190CrossRefPubMedGoogle Scholar
  8. Ermakov S, Malkin I, Keter M, Kobyliansky E, Livshits G (2008) Family-based association study of polymorphisms in the RUNX2 locus with hand bone length and hand BMD. Ann Hum Genet 72:510–518CrossRefPubMedGoogle Scholar
  9. Gatti D, Sartori E, Braga V, Corallo F, Rossini M, Adami S (2001) Radial bending breaking resistance derived by densitometric evaluation predicts femoral neck fracture. Osteoporos Int 12:864–869CrossRefPubMedGoogle Scholar
  10. Hoff M, Dhainaut A, Kvien TK, Forslind K, Kalvesten J, Haugeberg G (2009) Short-time in vitro and in vivo precision of direct digital X-ray radiogrammetry. J Clin Densitom 12:17–21CrossRefPubMedGoogle Scholar
  11. Horvath S, Xu X, Laird NM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9:301–306CrossRefPubMedGoogle Scholar
  12. Idris AI, van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779CrossRefPubMedGoogle Scholar
  13. Idris AI, Sophocleous A, Landao-Bassonga E, van’t Hof RJ, Ralston SH (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626CrossRefPubMedGoogle Scholar
  14. Kalichman L, Malkin I, Bigman G, Matias R, Seibel MJ, Kobyliansky E, Livshits G (2008) Age-related changes in bone-strength-associated geometry indices in naive human population. Anat Rec (Hoboken) 291:835–844Google Scholar
  15. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904CrossRefPubMedGoogle Scholar
  16. Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396CrossRefPubMedGoogle Scholar
  17. Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B, Mechoulam R, Buettner R, Werner S, Di Marzo V, Tuting T, Zimmer A (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316:1494–1497CrossRefPubMedGoogle Scholar
  18. Klein TW, Friedman H, Specter S (1998) Marijuana, immunity and infection. J Neuroimmunol 83:102–115CrossRefPubMedGoogle Scholar
  19. Livshits G, Karasik D, Kobyliansky E (2002) Complex segregation analysis of the radiographic phalanges bone mineral density and their age-related changes. J Bone Miner Res 17:152–161CrossRefPubMedGoogle Scholar
  20. Livshits G, Yakovenko K, Kobyliansky E (2003) Quantitative genetic study of radiographic hand bone size and geometry. Bone 32:191–198CrossRefPubMedGoogle Scholar
  21. Livshits G, Deng HW, Nguyen TV, Yakovenko K, Recker RR, Eisman JA (2004) Genetics of bone mineral density: evidence for a major pleiotropic effect from an intercontinental study. J Bone Miner Res 19:914–923CrossRefPubMedGoogle Scholar
  22. Malkin I, Ginsburg E (2006) Program package for Mendelian analysis of pedigree data (MAN, Version 6). Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University. Technical ReportGoogle Scholar
  23. Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103:696–701CrossRefPubMedGoogle Scholar
  24. Reed MR, Murray JR, Abdy SE, Francis RM, McCaskie AW (2004) The use of digital X-ray radiogrammetry and peripheral dual energy X-ray absorptiometry in patients attending fracture clinic after distal forearm fracture. Bone 34:716–719CrossRefPubMedGoogle Scholar
  25. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512CrossRefPubMedGoogle Scholar
  26. Sipe JC, Arbour N, Gerber A, Beutler E (2005) Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J Leukoc Biol 78:231–238CrossRefPubMedGoogle Scholar
  27. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365CrossRefPubMedGoogle Scholar
  28. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97CrossRefPubMedGoogle Scholar
  29. Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792CrossRefPubMedGoogle Scholar
  30. Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A, Regev E, Casap N, Shteyer A, Ledent C, Karsak M, Zimmer A, Mechoulam R, Yirmiya R, Shohami E, Bab I (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294CrossRefPubMedGoogle Scholar
  31. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592CrossRefPubMedGoogle Scholar
  32. Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19:791–801PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Meliha Karsak
    • 1
  • Ida Malkin
    • 2
  • Mohammad R. Toliat
    • 3
    • 4
  • Christian Kubisch
    • 3
    • 5
    • 6
    • 7
  • Peter Nürnberg
    • 3
    • 4
    • 7
  • Andreas Zimmer
    • 1
  • Gregory Livshits
    • 2
    • 8
  1. 1.Department of Molecular Psychiatry, Life and Brain CenterUniversity of BonnBonnGermany
  2. 2.Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Institute for GeneticsUniversity of CologneCologneGermany
  4. 4.Cologne Center for GenomicsUniversity of CologneCologneGermany
  5. 5.Institute of Human GeneticsUniversity of CologneCologneGermany
  6. 6.Center for Molecular Medicine CologneUniversity of CologneCologneGermany
  7. 7.Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)University of CologneCologneGermany
  8. 8.Yoran Institute for Human Genome Research, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations