Human Genetics

, Volume 125, Issue 5–6, pp 507–525 | Cite as

Biomarkers in nutritional epidemiology: applications, needs and new horizons

  • Mazda Jenab
  • Nadia Slimani
  • Magda Bictash
  • Pietro Ferrari
  • Sheila A. Bingham
Review Article


Modern epidemiology suggests a potential interactive association between diet, lifestyle, genetics and the risk of many chronic diseases. As such, many epidemiologic studies attempt to consider assessment of dietary intake alongside genetic measures and other variables of interest. However, given the multi-factorial complexities of dietary exposures, all dietary intake assessment methods are associated with measurement errors which affect dietary estimates and may obscure disease risk associations. For this reason, dietary biomarkers measured in biological specimens are being increasingly used as additional or substitute estimates of dietary intake and nutrient status. Genetic variation may influence dietary intake and nutrient metabolism and may affect the utility of a dietary biomarker to properly reflect dietary exposures. Although there are many functional dietary biomarkers that, if utilized appropriately, can be very informative, a better understanding of the interactions between diet and genes as potentially determining factors in the validity, application and interpretation of dietary biomarkers is necessary. It is the aim of this review to highlight how some important biomarkers are being applied in nutrition epidemiology and to address some associated questions and limitations. This review also emphasizes the need to identify new dietary biomarkers and highlights the emerging field of nutritional metabonomics as an analytical method to assess metabolic profiles as measures of dietary exposures and indicators of dietary patterns, dietary changes or effectiveness of dietary interventions. The review will also touch upon new statistical methodologies for the combination of dietary questionnaire and biomarker data for disease risk assessment. It is clear that dietary biomarkers require much further research in order to be better applied and interpreted. Future priorities should be to integrate high quality dietary intake information, measurements of dietary biomarkers, metabolic profiles of specific dietary patterns, genetics and novel statistical methodology in order to provide important new insights into gene-diet-lifestyle-disease risk associations.


Carotenoid Dietary Vitamin Dietary Exposure Dietary Assessment Sugar Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albanes D, Virtamo J, Taylor PR, Rautalahti M, Pietinen P, Heinonen OP (1997) Effects of supplemental beta-carotene, cigarette smoking, and alcohol consumption on serum carotenoids in the alpha-tocopherol, beta-carotene cancer prevention study. Am J Clin Nutr 66:366–372PubMedGoogle Scholar
  2. Al-Delaimy WK, Natarajan L, Sun X, Rock CL, Pierce JJ (2008) Reliability of plasma carotenoid biomarkers and its relation to study power. Epidemiology 19:338–344PubMedCrossRefGoogle Scholar
  3. Barua AB, Kostic D, Olson JA (1993) New simplified procedures for the extraction and simultaneous high-performance liquid chromatographic analysis of retinol, tocopherols and carotenoids in human serum. J Chromatogr 617:257–264PubMedCrossRefGoogle Scholar
  4. Bates CJ (1994) Plasma vitamin C assays: a European experience. EC FLAIR concerted action no. 10: Micronutrient measurement, absorption and status. Int J Vitam Nutr Res 64:283–287PubMedGoogle Scholar
  5. Baylin A, Ruiz-Narvaez E, Kraft P, Campos H (2007) Alpha-linolenic acid, delta 6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr 85:554–560PubMedGoogle Scholar
  6. Bentler PM, Weeks DG (1980) Linear structural equations with latent variables. Psychometrika 45:289–308CrossRefGoogle Scholar
  7. Benzie IF (1999) Vitamin C: prospective functional markers for defining optimal nutritional status. Proc Nutr Soc 58:469–476PubMedGoogle Scholar
  8. Benzie IF, Strain JJ (1997) Acute post-ingestion changes in plasma ascorbic acid concentration: relationship to the dose and to existing body stores. Nutr Res 17:187–190CrossRefGoogle Scholar
  9. Bingham S (1987) The dietary assessment of individuals: methods, accuracy, new techniques and recommendations. Nutr Abstr Rev 57:705–742Google Scholar
  10. Bingham SA (2002) Biomarkers in nutritional epidemiology. Public Health Nutr 5:821–827PubMedCrossRefGoogle Scholar
  11. Bingham SA (2003) Urine nitrogen as a biomarker for the validation of dietary protein intake. J Nutr 133(Suppl 3):921S–924SPubMedGoogle Scholar
  12. Bingham SA, Cassidy A, Cole TJ, Welch A, Runswick SA, Black AE, Thurnham D, Bates C, Khaw KT, Key TJ (1995) Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br J Nutr 73:531–550PubMedCrossRefGoogle Scholar
  13. Bingham SA, Hughes R, Cross AJ (2002) Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr 132:3522S–3525SPubMedGoogle Scholar
  14. Bingham S, Luben R, Welch A, Tasevska N, Wareham N, Khaw KT (2007) Epidemiologic assessment of sugars consumption using biomarkers: comparisons of obese and nonobese individuals in the European prospective investigation of cancer Norfolk. Cancer Epidemiol Biomarkers Prev 16:1651–1654PubMedCrossRefGoogle Scholar
  15. Bingham S, Luben R, Welch A, Low YL, Khaw KT, Wareham N, Day N (2008) Associations between dietary methods and biomarkers, and between fruits and vegetables and risk of ischaemic heart disease, in the EPIC Norfolk Cohort Study. Int J Epidemiol 37:978–987PubMedCrossRefGoogle Scholar
  16. Boeing H, Bohlscheid-Thomas S, Voss S, Schneeweiss S, Wahrendorf J (1997) The relative validity of vitamin intakes derived from a food frequency questionnaire compared to 24-hour recalls and biological measurements: results from the EPIC pilot study in Germany. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S82–S90PubMedCrossRefGoogle Scholar
  17. Bollen KA (1989) A new incremental fit index for general structural equation models. Sociol Methods Res 17:303–316CrossRefGoogle Scholar
  18. Brubacher D, Moser U, Jordan P (2000) Vitamin C concentrations in plasma as a function of intake: a meta-analysis. Int J Vitam Nutr Res 70:226–237PubMedCrossRefGoogle Scholar
  19. Burnett JR, Hooper AJ (2008) Common and rare gene variants affecting plasma LDL cholesterol. Clin Biochem Rev 29:11–26PubMedGoogle Scholar
  20. Castle AL, Fiehn O, Kaddurah-Daouk R, Lindon JC (2006) Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results. Brief Bioinform 7:159–165PubMedCrossRefGoogle Scholar
  21. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, Rodriguez C, Sinha R, Calle EE (2005) Meat consumption and risk of colorectal cancer. JAMA 293:172–182PubMedCrossRefGoogle Scholar
  22. Ching SY, Prins AW, Beilby JP (2002) Stability of ascorbic acid in serum and plasma prior to analysis. Ann Clin Biochem 39:518–520PubMedCrossRefGoogle Scholar
  23. Chiplonkar SA, Agte VV, Mengale SS, Tarwadi KV (2002) Are lifestyle factors good predictors of retinol and vitamin C deficiency in apparently healthy adults? Eur J Clin Nutr 56:96–104PubMedCrossRefGoogle Scholar
  24. Chung WY, Chung JK, Szeto YT, Tomlinson B, Benzie IF (2001) Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 34:623–627PubMedCrossRefGoogle Scholar
  25. Cooney RV, Franke AA, Hankin JH, Custer LJ, Wilkens LR, Harwood PJ, Le ML (1995) Seasonal variations in plasma micronutrients and antioxidants. Cancer Epidemiol Biomarkers Prev 4:207–215PubMedGoogle Scholar
  26. Corella D, Tucker K, Lahoz C, Coltell O, Cupples LA, Wilson PW, Schaefer EJ, Ordovas JM (2001) Alcohol drinking determines the effect of the APOE locus on LDL-cholesterol concentrations in men: the Framingham Offspring Study. Am J Clin Nutr 73:736–745PubMedGoogle Scholar
  27. Crews H, Alink G, Andersen R, Braesco V, Holst B, Maiani G, Ovesen L, Scotter M, Solfrizzo M, van den BR, Verhagen H, Williamson G (2001) A critical assessment of some biomarker approaches linked with dietary intake. Br J Nutr 86(Suppl 1):S5–35PubMedGoogle Scholar
  28. Cross AJ, Pollock JR, Bingham SA (2003) Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res 63:2358–2360PubMedGoogle Scholar
  29. Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R (2007) A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med 4:e325PubMedCrossRefGoogle Scholar
  30. Day N, McKeown N, Wong M, Welch A, Bingham S (2001) Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int J Epidemiol 30:309–317PubMedCrossRefGoogle Scholar
  31. Dehghan M, khtar-Danesh N, McMillan CR, Thabane L (2007) Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr J 6:41PubMedCrossRefGoogle Scholar
  32. Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V, Midthune D, Tooze JA, Krebs-Smith SM (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106:1640–1650PubMedCrossRefGoogle Scholar
  33. Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, Mitchell BD, Li X, Steinle NI, Munger SD (2008) Bitter taste receptors influence glucose homeostasis. PLoS ONE 3:e3974PubMedCrossRefGoogle Scholar
  34. Dowell SA, Welch JL (2006) Use of electronic self-monitoring for food and fluid intake: a pilot study. Nephrol Nurs J 33:271–277PubMedGoogle Scholar
  35. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103:12511–12516PubMedCrossRefGoogle Scholar
  36. Eck P, Erichsen HC, Taylor JG, Yeager M, Hughes AL, Levine M, Chanock S (2004) Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2. Hum Genet 115:285–294PubMedCrossRefGoogle Scholar
  37. Eny KM, Wolever TM, Fontaine-Bisson B, El-Sohemy A (2008) Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genomics 33:355–360PubMedCrossRefGoogle Scholar
  38. Erdman JW Jr (2005) How do nutritional and hormonal status modify the bioavailability, uptake, and distribution of different isomers of lycopene? J Nutr 135:2046S–2047SPubMedGoogle Scholar
  39. Fahmi S, Yang C, Esmail S, Hobbs HH, Cohen JC (2008) Functional characterization of genetic variants in NPC1L1 supports the sequencing extremes strategy to identify complex trait genes. Hum Mol Genet 17:2101–2107PubMedCrossRefGoogle Scholar
  40. Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E, Scalbert A (2008) A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 7:2388–2398PubMedCrossRefGoogle Scholar
  41. Ferrari P, Carroll RJ, Gustafson P, Riboli E (2008) A Bayesian multilevel model for estimating the diet/disease relationship in a multicenter study with exposures measured with error: the EPIC study. Stat Med 27:6037–6054PubMedCrossRefGoogle Scholar
  42. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedCrossRefGoogle Scholar
  43. Fontaine-Bisson B, Wolever TM, Chiasson JL, Rabasa-Lhoret R, Maheux P, Josse RG, Leiter LA, Rodger NW, Ryan EA, Connelly PW, Corey PN, El-Sohemy A (2007) Genetic polymorphisms of tumor necrosis factor-alpha modify the association between dietary polyunsaturated fatty acids and fasting HDL-cholesterol and apo A-I concentrations. Am J Clin Nutr 86:768–774PubMedGoogle Scholar
  44. Fontaine-Bisson B, Wolever TM, Connelly PW, Corey PN, El-Sohemy A (2009) NF-kappaB −49Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations. Atherosclerosis (e-pub ahead of print, PMID: 19070859)Google Scholar
  45. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265PubMedCrossRefGoogle Scholar
  46. Fraser GE, Yan R (2007) A multivariate method for measurement error correction using pairs of concentration biomarkers. Ann Epidemiol 17:64–73PubMedCrossRefGoogle Scholar
  47. Fraser GE, Butler TL, Shavlik D (2005) Correlations between estimated and true dietary intakes: using two instrumental variables. Ann Epidemiol 15:509–518PubMedCrossRefGoogle Scholar
  48. Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A (2009) Genetic variation in taste and its influence on food selection. OMICS 13:69–80 (PMID: 18687042)PubMedCrossRefGoogle Scholar
  49. Gibney M, Sigman-Grant M, Stanton JL Jr, Keast DR (1995) Consumption of sugars. Am J Clin Nutr 62:178S–193SPubMedGoogle Scholar
  50. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van OB (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82:497–503PubMedGoogle Scholar
  51. Gieger C, Geistlinger L, Altmaier E, Hrabe de AM, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:1000282CrossRefGoogle Scholar
  52. Goni I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54:5382–5387PubMedCrossRefGoogle Scholar
  53. Gonzalez CA, Jakszyn P, Pera G, Agudo A, Bingham S, Palli D, Ferrari P, Boeing H, Del GG, Plebani M, Carneiro F, Nesi G, Berrino F, Sacerdote C, Tumino R, Panico S, Berglund G, Siman H, Nyren O, Hallmans G, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Allen N, Key TJ, Day NE, Linseisen J, Nagel G, Bergmann MM, Overvad K, Jensen MK, Tjonneland A, Olsen A, Bueno-de-Mesquita HB, Ocke M, Peeters PH, Numans ME, Clavel-Chapelon F, Boutron-Ruault MC, Trichopoulou A, Psaltopoulou T, Roukos D, Lund E, Hemon B, Kaaks R, Norat T, Riboli E (2006) Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 98:345–354PubMedGoogle Scholar
  54. Goodman M, Bostick RM, Ward KC, Terry PD, van Gils CH, Taylor JA, Mandel JS (2006) Lycopene intake and prostate cancer risk: effect modification by plasma antioxidants and the XRCC1 genotype. Nutr Cancer 55:13–20PubMedCrossRefGoogle Scholar
  55. Gorfine M, Lipshtat N, Freedman LS, Prentice RL (2007) Linear measurement error models with restricted sampling. Biometrics 63:137–142PubMedCrossRefGoogle Scholar
  56. Grace PB, Taylor JI, Low YL, Luben RN, Mulligan AA, Botting NP, Dowsett M, Welch AA, Khaw KT, Wareham NJ, Day NE, Bingham SA (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev 13:698–708PubMedGoogle Scholar
  57. Graumlich JF, Ludden TM, Conry-Cantilena C, Cantilena LR Jr, Wang Y, Levine M (1997) Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm Res 14:1133–1139PubMedCrossRefGoogle Scholar
  58. He C, Tamimi RM, Hankinson SE, Hunter DJ, Han J (2009) A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res Treat 113:585–594PubMedCrossRefGoogle Scholar
  59. Hegele RA (1998) A review of intestinal fatty acid binding protein gene variation and the plasma lipoprotein response to dietary components. Clin Biochem 31:609–612PubMedCrossRefGoogle Scholar
  60. Hegsted DM, Ausman LM, Johnson JA, Dallal GE (1993) Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr 57:875–883PubMedGoogle Scholar
  61. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47:348–380PubMedCrossRefGoogle Scholar
  62. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De IM, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P (2008a) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400PubMedCrossRefGoogle Scholar
  63. Holmes E, Wilson ID, Nicholson JK (2008b) Metabolic phenotyping in health and disease. Cell 134:714–717PubMedCrossRefGoogle Scholar
  64. Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 19:73–82PubMedCrossRefGoogle Scholar
  65. Hunninghake DB, Miller VT, LaRosa JC, Kinosian B, Jacobson T, Brown V, Howard WJ, Edelman DA, O’Connor RR (1994) Long-term treatment of hypercholesterolemia with dietary fiber. Am J Med 97:504–508PubMedCrossRefGoogle Scholar
  66. Hunter DJ (2006) The influence of genetic polymorphism. J Nutr 136:2711S–2713SPubMedGoogle Scholar
  67. IARC Working Group on the Evaluation of Cancer Preventive Strategies (1998) Carotenoids. In: Vaino H, Heseltine E (eds) IARC Handbooks of cancer prevention, vol 2. IARC Press, LyonGoogle Scholar
  68. IARC Working Group on the Evaluation of Cancer Preventive Strategies (2003) Fruit and vegetables. In: Vaino H, Bianchini F (eds) IARC handbooks of cancer prevention, vol 8. IARC Press, LyonGoogle Scholar
  69. INTERSALT Co-operative Research Group (1988) Sodium, potassium, body mass, alcohol and blood pressure: the INTERSALT Study. The INTERSALT Co-operative Research Group. J Hypertens Suppl 6:S584–S586Google Scholar
  70. Ioannides C, Stone AN, Breacker PJ, Basu TK (1982) Impairment of absorption of ascorbic acid following ingestion of aspirin in guinea pigs. Biochem Pharmacol 31:4035–4038PubMedCrossRefGoogle Scholar
  71. Jacques PF, Sulsky SI, Sadowski JA, Phillips JC, Rush D, Willett WC (1993) Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr 57:182–189PubMedGoogle Scholar
  72. Jakszyn P, Bingham S, Pera G, Agudo A, Luben R, Welch A, Boeing H, Del GG, Palli D, Saieva C, Krogh V, Sacerdote C, Tumino R, Panico S, Berglund G, Siman H, Hallmans G, Sanchez MJ, Larranaga N, Barricarte A, Chirlaque MD, Quiros JR, Key TJ, Allen N, Lund E, Carneiro F, Linseisen J, Nagel G, Overvad K, Tjonneland A, Olsen A, Bueno-de-Mesquita HB, Ocke MO, Peeters PH, Numans ME, Clavel-Chapelon F, Trichopoulou A, Fenger C, Stenling R, Ferrari P, Jenab M, Norat T, Riboli E, Gonzalez CA (2006) Endogenous versus exogenous exposure to N-nitroso compounds and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study. Carcinogenesis 27:1497–1501PubMedCrossRefGoogle Scholar
  73. Jenab M, Bingham S, Ferrari P, Friesen MD, Al-Delaimy WK, Luben R, Wareham N, Khaw KT, Riboli E (2005) Long-term cryoconservation and stability of vitamin C in serum samples of the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 14:1837–1840PubMedCrossRefGoogle Scholar
  74. Jenab M, Riboli E, Ferrari P, Friesen M, Sabate J, Norat T, Slimani N, Tjonneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Boeing H, Schulz M, Linseisen J, Nagel G, Trichopoulou A, Naska A, Oikonomou E, Berrino F, Panico S, Palli D, Sacerdote C, Tumino R, Peeters PH, Numans ME, Bueno-de-Mesquita HB, Buchner FL, Lund E, Pera G, Chirlaque MD, Sanchez MJ, Arriola L, Barricarte A, Quiros JR, Johansson I, Johansson A, Berglund G, Bingham S, Khaw KT, Allen N, Key T, Carneiro F, Save V, Del GG, Plebani M, Kaaks R, Gonzalez CA (2006a) Plasma and dietary carotenoid, retinol and tocopherol levels and the risk of gastric adenocarcinomas in the European prospective investigation into cancer and nutrition. Br J Cancer 95:406–415PubMedCrossRefGoogle Scholar
  75. Jenab M, Riboli E, Ferrari P, Sabate J, Slimani N, Norat T, Friesen M, Tjonneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Touvier M, Boeing H, Schulz M, Linseisen J, Nagel G, Trichopoulou A, Naska A, Oikonomou E, Krogh V, Panico S, Masala G, Sacerdote C, Tumino R, Peeters PH, Numans ME, Bueno-de-Mesquita HB, Buchner FL, Lund E, Pera G, Sanchez CN, Sanchez MJ, Arriola L, Barricarte A, Quiros JR, Hallmans G, Stenling R, Berglund G, Bingham S, Khaw KT, Key T, Allen N, Carneiro F, Mahlke U, Del GG, Palli D, Kaaks R, Gonzalez CA (2006b) Plasma and dietary vitamin C levels and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Carcinogenesis 27:2250–2257PubMedCrossRefGoogle Scholar
  76. Joosen AM, Kuhnle GG, Runswick SA, Bingham SA (2008) Urinary sucrose and fructose as biomarkers of sugar consumption: comparison of normal weight and obese volunteers. Int J Obes (Lond) 32:1736–1740CrossRefGoogle Scholar
  77. Joshi AD, Corral R, Siegmund KD, Haile RW, Le ML, Martinez ME, Ahnen DJ, Sandler RS, Lance P, Stern MC (2009) Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways, and colorectal cancer risk. Carcinogenesis 30(3):472–479 (PMID: 19029193) Google Scholar
  78. Kaaks R, Ferrari P (2006) Dietary intake assessments in epidemiology: can we know what we are measuring? Ann Epidemiol 16:377–380PubMedCrossRefGoogle Scholar
  79. Kaaks R, Riboli E (2005) Epidemiologic studies of nutrition and cancer: let us not throw out the baby with the bath water. Int J Cancer 116:662–664PubMedCrossRefGoogle Scholar
  80. Kaaks R, Riboli E, Sinha R (1997) Biochemical markers of dietary intake. IARC Sci Publ 10:3–126Google Scholar
  81. Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E (2002) Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr 5:969–976PubMedCrossRefGoogle Scholar
  82. Kaput J (2008) Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 19:110–120PubMedCrossRefGoogle Scholar
  83. Karlsen A, Blomhoff R, Gundersen TE (2005) High-throughput analysis of vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J Chromatogr B Analyt Technol Biomed Life Sci 824:132–138PubMedCrossRefGoogle Scholar
  84. Karlsen A, Blomhoff R, Gundersen TE (2007) Stability of whole blood and plasma ascorbic acid. Eur J Clin Nutr 61:1233–1236PubMedCrossRefGoogle Scholar
  85. Key T, Oakes S, Davey G, Moore J, Edmond LM, McLoone UJ, Thurnham DI (1996) Stability of vitamins A, C, and E, carotenoids, lipids, and testosterone in whole blood stored at 4 degrees C for 6 and 24 hours before separation of serum and plasma. Cancer Epidemiol Biomarkers Prev 5:811–814PubMedGoogle Scholar
  86. Key TJ, Allen NE, Spencer EA, Travis RC (2002) The effect of diet on risk of cancer. Lancet 360:861–868PubMedCrossRefGoogle Scholar
  87. Kikunaga S, Tin T, Ishibashi G, Wang DH, Kira S (2007) The application of a handheld personal digital assistant with camera and mobile phone card (Wellnavi) to the general population in a dietary survey. J Nutr Sci Vitaminol (Tokyo) 53:109–116CrossRefGoogle Scholar
  88. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, Maekawa T, Takenaka K, Ichimiya H, Imaizumi N (2007) Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci 98:590–597PubMedCrossRefGoogle Scholar
  89. Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham S, Schoeller DA, Schatzkin A, Carroll RJ (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158:14–21PubMedCrossRefGoogle Scholar
  90. Kobayashi M, Sasaki S, Kawabata T, Hasegawa K, Akabane M, Tsugane S (2001) Single measurement of serum phospholipid fatty acid as a biomarker of specific fatty acid intake in middle-aged Japanese men. Eur J Clin Nutr 55:643–650PubMedCrossRefGoogle Scholar
  91. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516PubMedCrossRefGoogle Scholar
  92. Kuhnle GG, Story GW, Reda T, Mani AR, Moore KP, Lunn JC, Bingham SA (2007) Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med 43:1040–1047PubMedCrossRefGoogle Scholar
  93. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, Colman H, Le HC, Le NT, Bourdon J, Faroux R, Ollivry J, Lafraise B, Chupin LD, Bezieau S (2007) Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev 16:1460–1467PubMedCrossRefGoogle Scholar
  94. Levine M, Wang Y, Rumsey SC (1999) Analysis of ascorbic acid and dehydroascorbic acid in biological samples. Methods Enzymol 299:65–76PubMedCrossRefGoogle Scholar
  95. Lewin MH, Bailey N, Bandaletova T, Bowman R, Cross AJ, Pollock J, Shuker DE, Bingham SA (2006) Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res 66:1859–1865PubMedCrossRefGoogle Scholar
  96. Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184PubMedGoogle Scholar
  97. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485SPubMedGoogle Scholar
  98. Livingstone MB, Black AE (2003) Markers of the validity of reported energy intake. J Nutr 133(Suppl 3):895S–920SPubMedGoogle Scholar
  99. Lykkesfeldt J, Loft S, Poulsen HE (1995) Determination of ascorbic acid and dehydroascorbic acid in plasma by high-performance liquid chromatography with coulometric detection—are they reliable biomarkers of oxidative stress? Anal Biochem 229:329–335PubMedCrossRefGoogle Scholar
  100. MacDonald L, Thumser AE, Sharp P (2002) Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br J Nutr 87:97–100PubMedCrossRefGoogle Scholar
  101. Malekshah AF, Kimiagar M, Saadatian-Elahi M, Pourshams A, Nouraie M, Goglani G, Hoshiarrad A, Sadatsafavi M, Golestan B, Yoonesi A, Rakhshani N, Fahimi S, Nasrollahzadeh D, Salahi R, Ghafarpour A, Semnani S, Steghens JP, Abnet CC, Kamangar F, Dawsey SM, Brennan P, Boffetta P, Malekzadeh R (2006) Validity and reliability of a new food frequency questionnaire compared to 24 h recalls and biochemical measurements: pilot phase of Golestan cohort study of esophageal cancer. Eur J Clin Nutr 60:971–977PubMedCrossRefGoogle Scholar
  102. Mayne ST (2003) Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 133(Suppl 3):933S–940SPubMedGoogle Scholar
  103. Michels KB (2005a) Diet and cancer: current knowledge, methodologic pitfalls and future directions. Int J Cancer 116:665–666PubMedCrossRefGoogle Scholar
  104. Michels KB (2005b) The role of nutrition in cancer development and prevention. Int J Cancer 114:163–165PubMedCrossRefGoogle Scholar
  105. Minich DM, Bland JS (2008) Dietary management of the metabolic syndrome beyond macronutrients. Nutr Rev 66:429–444PubMedCrossRefGoogle Scholar
  106. Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616PubMedCrossRefGoogle Scholar
  107. Mutch DM, Klocke B, Morrison P, Murray CA, Henderson CJ, Seifert M, Williamson G (2007) The disruption of hepatic cytochrome p450 reductase alters mouse lipid metabolism. J Proteome Res 6:3976–3984PubMedCrossRefGoogle Scholar
  108. Nagao A (2004) Oxidative conversion of carotenoids to retinoids and other products. J Nutr 134:237S–240SPubMedGoogle Scholar
  109. Nelson EW, Lane H, Fabri PJ, Scott B (1978) Demonstration of saturation kinetics in the intestinal absorption of vitamin C in man and the guinea pig. J Clin Pharmacol 18:325–335PubMedGoogle Scholar
  110. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056PubMedCrossRefGoogle Scholar
  111. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189PubMedCrossRefGoogle Scholar
  112. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438PubMedCrossRefGoogle Scholar
  113. Noguchi Y, Sakai R, Kimura T (2003) Metabolomics and its potential for assessment of adequacy and safety of amino acid intake. J Nutr 133:2097S–2100SPubMedGoogle Scholar
  114. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, Overvad K, Olsen A, Tjonneland A, Clavel F, Boutron-Ruault MC, Kesse E, Boeing H, Bergmann MM, Nieters A, Linseisen J, Trichopoulou A, Trichopoulos D, Tountas Y, Berrino F, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Peeters PH, Engeset D, Lund E, Skeie G, Ardanaz E, Gonzalez C, Navarro C, Quiros JR, Sanchez MJ, Berglund G, Mattisson I, Hallmans G, Palmqvist R, Day NE, Khaw KT, Key TJ, San JM, Hemon B, Saracci R, Kaaks R, Riboli E (2005) Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 97:906–916PubMedCrossRefGoogle Scholar
  115. Norat T, Bowman R, Luben R, Welch A, Khaw KT, Wareham N, Bingham S (2008) Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. Am J Clin Nutr 88:392–397PubMedGoogle Scholar
  116. Nowell SA, Ahn J, Ambrosone CB (2004) Gene-nutrient interactions in cancer etiology. Nutr Rev 62:427–438PubMedCrossRefGoogle Scholar
  117. O’Keefe SJ (2008) Nutrition and colonic health: the critical role of the microbiota. Curr Opin Gastroenterol 24:51–58PubMedCrossRefGoogle Scholar
  118. Ordovas JM (2002) Gene-diet interaction and plasma lipid responses to dietary intervention. Biochem Soc Trans 30:68–73PubMedCrossRefGoogle Scholar
  119. Ordovas JM (2007) Gender, a significant factor in the cross talk between genes, environment, and health. Gend Med 4(Suppl B):S111–S122PubMedCrossRefGoogle Scholar
  120. Ordovas JM, Mooser V (2004) Nutrigenomics and nutrigenetics. Curr Opin Lipidol 15:101–108PubMedCrossRefGoogle Scholar
  121. Ordovas JM, Corella D, Cupples LA, Demissie S, Kelleher A, Coltell O, Wilson PW, Schaefer EJ, Tucker K (2002a) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 75:38–46PubMedGoogle Scholar
  122. Ordovas JM, Corella D, Demissie S, Cupples LA, Couture P, Coltell O, Wilson PW, Schaefer EJ, Tucker KL (2002b) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. Circulation 106:2315–2321PubMedCrossRefGoogle Scholar
  123. Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr 12:209–214PubMedGoogle Scholar
  124. Poppitt SD, Kilmartin P, Butler P, Keogh GF (2005) Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis 4:30PubMedCrossRefGoogle Scholar
  125. Potischman N (2003) Biologic and methodologic issues for nutritional biomarkers. J Nutr 133(Suppl 3):875S–880SPubMedGoogle Scholar
  126. Potischman N, Freudenheim JL (2003) Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr 133(Suppl 3):873S–874SPubMedGoogle Scholar
  127. Prentice RL, Sugar E, Wang CY, Neuhouser M, Patterson R (2002) Research strategies and the use of nutrient biomarkers in studies of diet and chronic disease. Public Health Nutr 5:977–984PubMedCrossRefGoogle Scholar
  128. Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE, Wogan GN, Groopman JD (1994) A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 3:3–10PubMedGoogle Scholar
  129. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216PubMedCrossRefGoogle Scholar
  130. Reboul E, Richelle M, Perrot E, smoulins-Malezet C, Pirisi V, Borel P (2006) Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem 54:8749–8755PubMedCrossRefGoogle Scholar
  131. Reboul E, Thap S, Tourniaire F, Andre M, Juhel C, Morange S, Amiot MJ, Lairon D, Borel P (2007) Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br J Nutr 97:440–446PubMedCrossRefGoogle Scholar
  132. Reszka E, Wasowicz W, Gromadzinska J (2006) Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. Br J Nutr 96:609–619PubMedGoogle Scholar
  133. Rezzi S, Ramadan Z, Martin FP, Fay LB, van BP, Lindon JC, Nicholson JK, Kochhar S (2007) Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res 6:4469–4477PubMedCrossRefGoogle Scholar
  134. Ribalta J, Vallve JC, Girona J, Masana L (2003) Apolipoprotein and apolipoprotein receptor genes, blood lipids and disease. Curr Opin Clin Nutr Metab Care 6:177–187PubMedCrossRefGoogle Scholar
  135. Riboli E, Kaaks R (2000) Invited commentary: the challenge of multi-center cohort studies in the search for diet and cancer links. Am J Epidemiol 151:371–374PubMedGoogle Scholar
  136. Riboli E, Ronnholm H, Saracci R (1987) Biological markers of diet. Cancer Surv 6:685–718PubMedGoogle Scholar
  137. Richardson S, Gilks WR (1993) Conditional independence models for epidemiological studies with covariate measurement error. Stat Med 12:1703–1722PubMedCrossRefGoogle Scholar
  138. Rosner B, Michels KB, Chen YH, Day NE (2008) Measurement error correction for nutritional exposures with correlated measurement error: use of the method of triads in a longitudinal setting. Stat Med 27:3466–3489PubMedCrossRefGoogle Scholar
  139. Saadatian-Elahi M, Slimani N, Chajes V, Jenab M, Goudable J, Biessy C, Ferrari P, Byrnes G, Autier P, Peeters PH, Ocke M, Bueno de MB, Johansson I, Hallmans G, Manjer J, Wirfalt E, Gonzalez CA, Navarro C, Martinez C, Amiano P, Suarez LR, Ardanaz E, Tjonneland A, Halkjaer J, Overvad K, Jakobsen MU, Berrino F, Pala V, Palli D, Tumino R, Vineis P, de Magistris MS, Spencer EA, Crowe FL, Bingham S, Khaw KT, Linseisen J, Rohrmann S, Boeing H, Noethlings U, Olsen KS, Skeie G, Lund E, Trichopoulou A, Oustoglou E, Clavel-Chapelon F, Riboli E (2009) Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 89(1):331–346 (PMID: 19056549)Google Scholar
  140. Saffhill R, Margison GP, O’Connor PJ (1985) Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 823:111–145PubMedGoogle Scholar
  141. Saintot M, Astre C, Scali J, Gerber M (1995) Within-subjects seasonal variation and determinants of inter-individual variations of plasma beta-carotene. Int J Vitam Nutr Res 65:169–174PubMedGoogle Scholar
  142. Saracci R (1997) Comparing measurements of biomarkers with other measurements of exposure. IARC Sci Publ 30:3–312Google Scholar
  143. Sasaki S, Ushio F, Amano K, Morihara M, Todoriki O, Uehara Y, Toyooka E (2000) Serum biomarker-based validation of a self-administered diet history questionnaire for Japanese subjects. J Nutr Sci Vitaminol (Tokyo) 46:285–296Google Scholar
  144. Schatzkin A, Kipnis V, Carroll RJ, Midthune D, Subar AF, Bingham S, Schoeller DA, Troiano RP, Freedman LS (2003) A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol 32:1054–1062PubMedCrossRefGoogle Scholar
  145. Schatzkin A, Abnet CC, Cross AJ, Gunter M, Pfeiffer R, Gail M, Lim U, vey-Smith G (2009) Mendelian randomization: how it can—and cannot—help confirm causal relations between nutrition and cancer. Cancer Prev Res (Phila Pa) 2:104–113CrossRefGoogle Scholar
  146. Schroder H, Covas MI, Marrugat J, Vila J, Pena A, Alcantara M, Masia R (2001) Use of a three-day estimated food record, a 72-hour recall and a food-frequency questionnaire for dietary assessment in a Mediterranean Spanish population. Clin Nutr 20:429–437PubMedCrossRefGoogle Scholar
  147. Slimani N, Valsta L (2002) Perspectives of using the EPIC-SOFT programme in the context of pan-European nutritional monitoring surveys: methodological and practical implications. Eur J Clin Nutr 56(Suppl 2):S63–S74PubMedCrossRefGoogle Scholar
  148. Slimani N, Deharveng G, Charrondiere RU, van Kappel AL, Ocke MC, Welch A, Lagiou A, van LM, Agudo A, Pala V, Brandstetter B, Andren C, Stripp C, Van Staveren WA, Riboli E (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed 58:251–266PubMedCrossRefGoogle Scholar
  149. Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G, Kroke A, Trichopoulos D, Trichopoulou A, Lauria C, Bellegotti M, Ocke MC, Peeters PH, Engeset D, Lund E, Agudo A, Larranaga N, Mattisson I, Andren C, Johansson I, Davey G, Welch AA, Overvad K, Tjonneland A, Van Staveren WA, Saracci R, Riboli E (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5:1125–1145PubMedCrossRefGoogle Scholar
  150. Solanky KS, Bailey NJ, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323:197–204PubMedCrossRefGoogle Scholar
  151. Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, Nicholson JK, Cassidy A (2005) Biofluid 1H NMR-based metabonomic techniques in nutrition research - metabolic effects of dietary isoflavones in humans. J Nutr Biochem 16:236–244PubMedCrossRefGoogle Scholar
  152. Sonnenberg LM, Quatromoni PA, Gagnon DR, Cupples LA, Franz MM, Ordovas JM, Wilson PW, Schaefer EJ, Millen BE (1996) Diet and plasma lipids in women. II. Macronutrients and plasma triglycerides, high-density lipoprotein, and the ratio of total to high-density lipoprotein cholesterol in women: the Framingham nutrition studies. J Clin Epidemiol 49:665–672PubMedCrossRefGoogle Scholar
  153. Spiegelman D, Zhao B, Kim J (2005) Correlated errors in biased surrogates: study designs and methods for measurement error correction. Stat Med 24:1657–1682PubMedCrossRefGoogle Scholar
  154. Stamler J, Elliott P, Appel L, Chan Q, Buzzard M, Dennis B, Dyer AR, Elmer P, Greenland P, Jones D, Kesteloot H, Kuller L, Labarthe D, Liu K, Moag-Stahlberg A, Nichaman M, Okayama A, Okuda N, Robertson C, Rodriguez B, Stevens M, Ueshima H, Horn LV, Zhou B (2003) Higher blood pressure in middle-aged American adults with less education-role of multiple dietary factors: the INTERMAP study. J Hum Hypertens 17:655–775PubMedCrossRefGoogle Scholar
  155. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der OF, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5:2780–2788PubMedCrossRefGoogle Scholar
  156. Stram DO, Hankin JH, Wilkens LR, Pike MC, Monroe KR, Park S, Henderson BE, Nomura AM, Earle ME, Nagamine FS, Kolonel LN (2000) Calibration of the dietary questionnaire for a multiethnic cohort in Hawaii and Los Angeles. Am J Epidemiol 151:358–370PubMedGoogle Scholar
  157. Subar AF, Thompson FE, Potischman N, Forsyth BH, Buday R, Richards D, McNutt S, Hull SG, Guenther PM, Schatzkin A, Baranowski T (2007) Formative research of a quick list for an automated self-administered 24-hour dietary recall. J Am Diet Assoc 107:1002–1007PubMedCrossRefGoogle Scholar
  158. Sugar EA, Wang CY, Prentice RL (2007) Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63:143–151PubMedCrossRefGoogle Scholar
  159. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, Tucker KL, Ordovas JM (2005) Polyunsaturated fatty acids interact with the PPARA-L162 V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham Heart Study. J Nutr 135:397–403PubMedGoogle Scholar
  160. Tasevska N, Runswick SA, McTaggart A, Bingham SA (2005) Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiol Biomarkers Prev 14:1287–1294PubMedCrossRefGoogle Scholar
  161. Tasevska N, Runswick SA, Welch AA, McTaggart A, Bingham SA (2008) Urinary sugars biomarker relates better to extrinsic than to intrinsic sugars intake in a metabolic study with volunteers consuming their normal diet. Eur J Clin NutrGoogle Scholar
  162. Terzuoli L, Pagani R, Frosi B, Galli A, Felici C, Barabesi L, Porcelli B (2004) Stability of serum and plasma ascorbic acid. J Lab Clin Med 143:67PubMedCrossRefGoogle Scholar
  163. Thompson FE, Moler JE, Freedman LS, Clifford CK, Stables GJ, Willett WC (1997) Register of dietary assessment calibration-validation studies: a status report. Am J Clin Nutr 65:1142S–1147SPubMedGoogle Scholar
  164. Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AF, Guenther PM, Carroll RJ, Kipnis V (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106:1575–1587PubMedCrossRefGoogle Scholar
  165. Truswell AS (1995) Dietary fibre and plasma lipids. Eur J Clin Nutr 49(Suppl 3):S105–S109PubMedGoogle Scholar
  166. Van Dorsten FA, Daykin CA, Mulder TP, Van Duynhoven JP (2006) Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem 54:6929–6938PubMedCrossRefGoogle Scholar
  167. Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH (2008) Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: findings from Adventist Health Studies. Ann Nutr Metab 52:96–104PubMedCrossRefGoogle Scholar
  168. Vioque J, Weinbrenner T, Asensio L, Castello A, Young IS, Fletcher A (2007) Plasma concentrations of carotenoids and vitamin C are better correlated with dietary intake in normal weight than overweight and obese elderly subjects. Br J Nutr 97:977–986PubMedCrossRefGoogle Scholar
  169. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ (2006) Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 84:531–539PubMedGoogle Scholar
  170. Walsh MC, Brennan L, Pujos-Guillot E, Sebedio JL, Scalbert A, Fagan A, Higgins DG, Gibney MJ (2007) Influence of acute phytochemical intake on human urinary metabolomic profiles. Am J Clin Nutr 86:1687–1693PubMedGoogle Scholar
  171. Wang DH, Kogashiwa M, Kira S (2006) Development of a new instrument for evaluating individuals’ dietary intakes. J Am Diet Assoc 106:1588–1593PubMedCrossRefGoogle Scholar
  172. Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK (2007) Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res 6:1846–1854PubMedCrossRefGoogle Scholar
  173. Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111PubMedCrossRefGoogle Scholar
  174. Weiss EP, Brown MD, Shuldiner AR, Hagberg JM (2002) Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiol Genomics 10:145–157PubMedGoogle Scholar
  175. Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25:105–125PubMedCrossRefGoogle Scholar
  176. Wolk A, Furuheim M, Vessby B (2001) Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. J Nutr 131:828–833PubMedGoogle Scholar
  177. Wood KC, Fullerton MD, El-Sohemy A, Bakovic M (2008) Interactions between hepatic lipase and apolipoprotein E gene polymorphisms affect serum lipid profiles of healthy Canadian adults. Appl Physiol Nutr Metab 33:761–768PubMedCrossRefGoogle Scholar
  178. World Cancer Research Fund and American Institute for Cancer Research (1997) Food, nutrition and the prevention of cancer: a global perspective. World Cancer Research Fund; American Institute for Cancer Research, Washington, DCGoogle Scholar
  179. World Cancer Research Fund (2007) Food, nutrition, physical activity and the prevention of cancer: a global perspective. World Cancer Research Fund; American Institute for Cancer Research, Washington, DCGoogle Scholar
  180. Wu K, Bowman R, Welch AA, Luben RN, Wareham N, Khaw KT, Bingham SA (2007) Apolipoprotein E polymorphisms, dietary fat and fibre, and serum lipids: the EPIC Norfolk study. Eur Heart J 28:2930–2936PubMedCrossRefGoogle Scholar
  181. Zhao HL, Houweling AH, Vanstone CA, Jew S, Trautwein EA, Duchateau GS, Jones PJ (2008) Genetic variation in ABC G5/G8 and NPC1L1 impact cholesterol response to plant sterols in hypercholesterolemic men. Lipids 43:1155–1164PubMedCrossRefGoogle Scholar
  182. Zunft HJ, Luder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grunwald J (2003) Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nutr 42:235–242PubMedCrossRefGoogle Scholar
  183. Zuppi C, Messana I, Forni F, Rossi C, Pennacchietti L, Ferrari F, Giardina B (1997) 1H NMR spectra of normal urines: reference ranges of the major metabolites. Clin Chim Acta 265:85–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mazda Jenab
    • 1
  • Nadia Slimani
    • 2
  • Magda Bictash
    • 3
  • Pietro Ferrari
    • 4
  • Sheila A. Bingham
    • 5
  1. 1.Lifestyle, Environment and Cancer GroupInternational Agency for Research on Cancer (IARC-WHO)LyonFrance
  2. 2.Nutritional and Database Resource TeamInternational Agency for Research on Cancer (IARC-WHO)LyonFrance
  3. 3.Division of Epidemiology, Public Health and Primary CareImperial College LondonLondonUK
  4. 4.Data Collection and Exposure UnitEuropean Food Safety Authority (EFSA)ParmaItaly
  5. 5.MRC Centre for Nutritional Epidemiology in Cancer Prevention and Survival, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK

Personalised recommendations