Human Genetics

, Volume 125, Issue 3, pp 319–326

Pyruvate dehydrogenase phosphatase 1 (PDP1) null mutation produces a lethal infantile phenotype

  • J. M. Cameron
  • M. Maj
  • V. Levandovskiy
  • C. P. Barnett
  • S. Blaser
  • N. MacKay
  • J. Raiman
  • A. Feigenbaum
  • A. Schulze
  • B. H. Robinson
Original Investigation

Abstract

Pyruvate dehydrogenase phosphatase deficiency has previously only been confirmed at the molecular level in two brothers and two breeds of dog with exercise intolerance. A female patient, who died at 6 months, presented with lactic acidemia in the neonatal period with serum lactate levels ranging from 2.5 to 17 mM. Failure of dichloroacetate to activate the PDH complex in skin fibroblasts was evident, but not in early passages. A homozygous c.277G > T (p.E93X) nonsense mutation in the PDP1 gene was identified in genomic DNA and immunoblotting showed a complete absence of PDP1 protein in mitochondria. Native PDHC activity could be restored by the addition of either recombinant PDP1 or PDP2. This highlights the role of PDP2, the second phosphatase isoform, in PDP1-deficient patients for the first time. We conclude that the severity of the clinical course associated with PDP1 deficiency can be quite variable depending on the exact nature of the molecular defect.

Abbreviations

Bp

Base pair

coA

Coenzyme A

DCA

Dichloroacetate

PCR

Polymerase chain reaction

PDH

Pyruvate dehydrogenase

PDHC

Pyruvate dehydrogenase complex

PDK

Pyruvate dehydrogenase kinase

PDP

Pyruvate dehydrogenase phosphatase

RT

Reverse transcriptase

TCA

Trichloroacetic acid

TCA cycle

Tricarboxylic acid cycle

References

  1. Brown RM, Head RA, Boubriak II, Leonard JV, Thomas NH, Brown GK (2004) Mutations in the gene for the E1beta subunit: a novel cause of pyruvate dehydrogenase deficiency. Hum Genet 115:123–127PubMedCrossRefGoogle Scholar
  2. Cameron JM, Maj MC, Levandovskiy V, MacKay N, Shelton GD, Robinson BH (2007) Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency. Mol Genet Metab 90:15–23PubMedCrossRefGoogle Scholar
  3. Cameron JM, Maj MC, Robinson BH (2008) Deficiency disorders of components of PDH complex: E2, E3 and E3BP deficiencies. In: Patel MS, Packer L (eds) Lipoic acid: energy production, antioxidant activity and health effects. CRC Press, West Palm Beach, pp 375–406Google Scholar
  4. DeVivo DC, Haymond MW, Obert KA, Nelson JS, Pagliara AS (1979) Defective activation of the pyruvate dehydrogenase complex in subacute necrotizing encephalomyelopathy (Leigh disease). Ann Neurol 6:483–494PubMedCrossRefGoogle Scholar
  5. Forni L, McKinnon W, Lord G, Treacher D, Peron J-M, Hilton P (2005) Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care 9:R591–R595PubMedCrossRefGoogle Scholar
  6. Harris RA, Huang B, Wu P (2006) Control of pyruvate dehydrogenase kinase gene expression. Adv Enzyme Regulat 41:269–288CrossRefGoogle Scholar
  7. Head RA, Brown RM, Zolkipli Z, Shahdadpuri R, King MD, Clayton PT, Brown GK (2005) Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol 58:234–241PubMedCrossRefGoogle Scholar
  8. Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem 273:17680–17688PubMedCrossRefGoogle Scholar
  9. Kim J-w, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  10. Koster JF, Slee RG, Fernandes J (1978) Lactic acidosis due to a defect in the pyruvate dehydrogenase complex: a possible brain pyruvate dehydrogenase phosphatase deficiency. Monogr Hum Genet 9:7–11PubMedGoogle Scholar
  11. Linn TC, Pettit FH, Hucho F, Reed LJ (1969a) Alpha-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proc Natl Acad Sci USA 64:227–234PubMedCrossRefGoogle Scholar
  12. Linn TC, Pettit FH, Reed LJ (1969b) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241PubMedCrossRefGoogle Scholar
  13. Lissens W, De Meirleir L, Seneca S, Liebaers I, Brown GK, Brown RM, Ito M, Naito E, Kuroda Y, Kerr DS, Wexler ID, Patel MS, Robinson BH, Seyda A (2000) Mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum Mutat 15:209–219PubMedCrossRefGoogle Scholar
  14. Maj MC, MacKay N, Levandovskiy V, Addis J, Baumgartner ER, Baumgartner MR, Robinson BH, Cameron JM (2005) Pyruvate dehydrogenase phosphatase deficiency: identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 90:4101–4107PubMedCrossRefGoogle Scholar
  15. Maj MC, Cameron JM, Robinson BH (2006) Pyruvate dehydrogenase phosphatase deficiency: orphan disease or an under-diagnosed condition? Mol Cell Endocrinol 249:1–9PubMedGoogle Scholar
  16. Pitkanen S, Raha S, Robinson BH (1996) Diagnosis of complex I deficiency in patients with lactic acidemia using skin fibroblast cultures. Biochem Mol Med 59:134–137PubMedCrossRefGoogle Scholar
  17. Robinson BH (2001) Lactic acidemia (Disorders of pyruvate carboxylase, pyruvate dehydrogenase). In: Scriver CRBA, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2275–2295Google Scholar
  18. Robinson BH, Sherwood WG (1975) Pyruvate dehydrogenase phosphatase deficiency: a cause of congenital chronic lactic acidosis in infancy. Pediatr Res 9:935–939PubMedCrossRefGoogle Scholar
  19. Robinson BH, Glerum DM, Chow W, Petrova-Benedict R, Lightowlers R, Capaldi R (1990) The use of skin fibroblast cultures in the detection of respiratory chain defects in patients with lacticacidemia. Pediatr Res 28:549–555PubMedCrossRefGoogle Scholar
  20. Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17:2364–2370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. M. Cameron
    • 1
  • M. Maj
    • 1
  • V. Levandovskiy
    • 1
  • C. P. Barnett
    • 2
  • S. Blaser
    • 3
  • N. MacKay
    • 1
  • J. Raiman
    • 2
  • A. Feigenbaum
    • 2
  • A. Schulze
    • 1
    • 2
  • B. H. Robinson
    • 1
    • 4
  1. 1.Genetics and Genome Biology, The Research InstituteThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Division of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Division of NeuroradiologyThe Hospital for Sick ChildrenTorontoCanada
  4. 4.Departments of Biochemistry and PaediatricsUniversity of TorontoTorontoCanada

Personalised recommendations