Human Genetics

, 125:119 | Cite as

Air pollution and mutations in the germline: are humans at risk?

  • Christopher M. Somers
  • David N. Cooper
Review Article


Genotoxic air pollution is ubiquitous in urban and industrial areas. A variety of studies has linked human exposure to air pollution with a number of different somatic cell endpoints including cancer. However, the potential for inducing mutations in the human germline remains unclear. Sentinel animal studies of germline mutations at tandem-repeat loci (specifically minisatellites and expanded simple tandem repeats) have recently provided proof of principle that germline mutations can be induced in vertebrates (birds and mice) by air pollution under ambient conditions. Although humans may also be susceptible to induced germline mutations in polluted areas, uncertainties regarding causative agents, doses, and mutational mechanisms at repetitive DNA loci currently preclude extrapolation from animal data to the evaluation of human risk. Nevertheless, several recent studies have linked air pollution exposure to DNA damage in human sperm, indicating that our germ cells are not impervious to the genotoxic effects of air pollution. Thus, both sentinel animal and human studies have raised the possibility that ambient air pollution may increase human germline mutation rates, especially at repetitive DNA loci. Given that some human genetic conditions appear to be modulated by length mutations at tandem-repeat loci (e.g. HRAS1 cancers, type 1 diabetes, etc.), there is an urgent need for extensive study in this area. Research should be primarily focused upon: (1) the direct measurement of mutation frequencies at repetitive DNA loci in human male germ cells as a function of air pollution exposure, (2) large-scale epidemiology studies of inherited disorders and tandem-repeat associated genetic conditions and air pollution, and (3) the characterization of mutational mechanisms at hypervariable tandem-repeat loci.


Germline Mutation Spermatogonial Stem Cell Sperm Chromatin Structure Assay Sentinel Animal Mainstream Tobacco Smoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This article was supported by funds from the Canada Research Chairs program to CMS.


  1. Armour JA (2006) Tandemly repeated DNA: why should anyone care? Mutat Res 598:6–14PubMedGoogle Scholar
  2. Barber R, Plumb M, Boulton E, Roux I, Dubrova YE (2002) Elevated mutation rates in the germ line of first and second generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99:6877–6882PubMedCrossRefGoogle Scholar
  3. Barber R, Miccoli L, van Buul PPW, Burr KL-A, van Duyn-Goedhart A, Angulo JF, Dubrova YE (2004) Germline mutation rates at tandem repeat loci in DNA-repair deficient mice. Mutat Res 554:287–295PubMedGoogle Scholar
  4. Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ (2007) The multitude and diversity of environmental carcinogens. Environ Res 105:414–429PubMedCrossRefGoogle Scholar
  5. Bennett ST, Lucasses AM, Gough SCL, Powell EE, Undlien DE, Pritchard LE, Merriman ME, Kawaguchi Y, Dronsfield MJ, Pociot F, Nerup J, Bouzekri N, Cambon-Thomsen A, Ronningen KS, Barnett AH, Bain SC, Todd JA (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9:284–292PubMedCrossRefGoogle Scholar
  6. Binkova B, Chvatalova I, Lnenickova Z, Milcova A, Tulupova E, Farmer PB, Sram RJ (2007) PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms. Mutat Res 620:49–61PubMedGoogle Scholar
  7. Bois P, Jeffreys AJ (1999) Minisatellite instability and germline mutation. Cell Mol Life Sci 55:1636–1648PubMedCrossRefGoogle Scholar
  8. Bois P, Williamson J, Brown J, Dubrova YE, Jeffreys AJ (1998) A novel unstable mouse VNTR family expanded from SINE B1 elements. Genomics 49:122–128PubMedCrossRefGoogle Scholar
  9. Bostrom C-E, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:s451–s488Google Scholar
  10. Bouffler SD, Bridges BA, Cooper DN, Dubrova Y, McMillan TJ, Thacker J, Wright EG, Waters R (2006) Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers. Radiat Res 165:249–268PubMedCrossRefGoogle Scholar
  11. Bridges BA (2003) Strange goings-on in the mouse germ line. DNA Repair 2:1269–1272PubMedCrossRefGoogle Scholar
  12. Brook RD, Jerrett M, Brook JR, Bard RL, Finkelstein MM (2008) The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 50:32–38PubMedCrossRefGoogle Scholar
  13. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242PubMedCrossRefGoogle Scholar
  14. Chen B, Hong C, Kan H (2004) Exposures and health outcomes from outdoor air pollutants in China. Toxicology 198:291–300PubMedCrossRefGoogle Scholar
  15. Clapp RW, Jacobs MM, Loechler EL (2008) Environmental and occupational causes of cancer: new evidence 2005–2007. Rev Environ Health 23:1–37PubMedGoogle Scholar
  16. Claxton LD, Woodall GM Jr (2007) A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res 636:36–94PubMedCrossRefGoogle Scholar
  17. Cohen AJ (2000) Outdoor air pollution and lung cancer. Environ Health Perspect 108 S4:743–750CrossRefGoogle Scholar
  18. Cordier S, Chevrier C, Robert-Gnansia E, Lorente C, Brula P, Hours M (2004) Risk of congenital anomalies in the vicinity of municipal solid waste incinerators. Occup Environ Med 61:8–15PubMedCrossRefGoogle Scholar
  19. Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y (2006) Adverse health effects of outdoor air pollutants. Environ Int 32:815–830PubMedCrossRefGoogle Scholar
  20. De Fonzo V, Bersani E, Aluffi-Pentini F, Parisi V (2000) A new look at the challenging world of tandem repeats. Med Hypotheses 54:750–760PubMedCrossRefGoogle Scholar
  21. DeMarini DM (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 567:447–474PubMedCrossRefGoogle Scholar
  22. Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRefGoogle Scholar
  23. Dubrova YE (2003) Germline mutation induction at mouse and human tandem repeat DNA loci. Adv Exp Med Biol 518:115–129PubMedGoogle Scholar
  24. Dubrova YE (2005) Radiation-induced mutation at tandem repeat DNA loci in the mouse germline: spectra and doubling doses. Radiat Res 163:200–207PubMedCrossRefGoogle Scholar
  25. Dubrova YE, Jeffreys AJ, Malashenko AM (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5:92–94PubMedCrossRefGoogle Scholar
  26. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–686PubMedCrossRefGoogle Scholar
  27. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Vergnaud G, Giraudeau F, Buard J, Jeffreys AJ (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res 381:267–278PubMedGoogle Scholar
  28. Dubrova YE, Plumb M, Brown J, Fennelly J, Bois P, Goodhead D, Jeffreys AJ (1998) Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci USA 95:6251–6255PubMedCrossRefGoogle Scholar
  29. Dubrova YE, Plumb M, Brown J, Boulton E, Goodhead D, Jeffreys AJ (2000) Induction of minisatellite mutations in the mouse germline by low-dose chronic exposure to gamma radiation and fission neutrons. Mutat Res 453:17–24PubMedGoogle Scholar
  30. Dubrova YE, Bersimbaev RI, Djansugurova LB, Tankimanova MK, Mamyrbaeva ZZh, Mustonen R, Lindholm C, Hultén M, Salomaa S (2002) Nuclear weapons tests and human germline mutation rate. Science 295:1037PubMedCrossRefGoogle Scholar
  31. Dubrova YE, Ploshchanskaya OG, Kozionova OS, Akleyev AV (2006) Minisatellite germline mutation rate in the Techa River population. Mutat Res 602:74–82PubMedGoogle Scholar
  32. Ellegren H, Lindgren G, Primmer CR, Møller AP (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596PubMedCrossRefGoogle Scholar
  33. Ettinger HJ, DeField JD, Bevis DA, Mitchell RN (1969) HEPA filter efficiencies using thermal and air-jet generated dioctyl phthalate. Am Ind Hyg Assoc J 30:20–26PubMedGoogle Scholar
  34. Evenson DP, Wixon R (2005) Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA). Toxicol Appl Pharmacol 207(2 Suppl):532–537PubMedCrossRefGoogle Scholar
  35. Fan H, Chu JY (2007) A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics 5:7–14PubMedCrossRefGoogle Scholar
  36. Fan YJ, Wang Z, Sadamoto S, Ninomiya Y, Kotomura N, Kamiya K, Dohi K, Kominami R, Niwa O (1995) Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. Int J Radiation Biol 68:177–183CrossRefGoogle Scholar
  37. Farmer PB, Singh R, Kaur B, Sram RJ, Binkova B, Kalina I, Popov TA, Garte S, Taioli E, Gabelova A, Cebulska-Wasilewska A (2003) Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 544:397–402PubMedCrossRefGoogle Scholar
  38. Georgiadis P, Kyrtopoulos SA (1999) Molecular epidemiological approaches to the study of the genotoxic effects of urban air pollution. Mutat Res 428:91–98PubMedGoogle Scholar
  39. Gibbs M, Collick A, Kelly RG, Jeffreys AJ (1993) A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics 17:121–128PubMedCrossRefGoogle Scholar
  40. Green M, Krontiris TG (1993) Allelic variation of reporter gene activation by the HRAS1 minisatellite. Genomics 17:429–434PubMedCrossRefGoogle Scholar
  41. Husgafvel-Pursiainen K (2004) Genotoxicity of environmental tobacco smoke: a review. Mutat Res 567:427–445PubMedCrossRefGoogle Scholar
  42. Jeffreys AJ, Bois P, Buard J, Collick A, Dubrova Y, Hollies CR, May CA, Murray J, Neil DL, Neumann R, Stead JD, Tamaki K, Yardley J (1997) Spontaneous and induced minisatellite instability. Electrophoresis 18:1501–1511PubMedCrossRefGoogle Scholar
  43. Kelly R, Bulfield G, Collick A, Gibbs M, Jeffreys AJ (1989) Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development. Genomics 5:844–856PubMedCrossRefGoogle Scholar
  44. Keohavong P, Xi L, Day RD, Zhang L, Grant SG, Day BW, Ness RB, Bigbee WL (2005) HPRT gene alterations in umbilical cord blood T-lymphocytes in newborns of mothers exposed to tobacco smoke during pregnancy. Mutat Res 572:156–166PubMedGoogle Scholar
  45. Kleeberger SR (2003) Genetic aspects of susceptibility to air pollution. Eur Respir J Suppl 40:52s–56sPubMedCrossRefGoogle Scholar
  46. Koster MD, Ryckman DP, Weseloh DV, Struger J (1996) Mercury levels in Great Lakes herring gull (Larus argentatus) eggs, 1972–1992. Environ Pollut 93:261–270PubMedCrossRefGoogle Scholar
  47. Krontiris TG, Devlin B, Karp DD, Robert NJ, Risch N (1993) An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. New Engl J Med 329:517–523PubMedCrossRefGoogle Scholar
  48. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133PubMedCrossRefGoogle Scholar
  49. Lockwood AH (2002) Diabetes and air pollution. Diabetes Care 25:1487–1488PubMedCrossRefGoogle Scholar
  50. Madsen BE, Villesen P, Wiuf C (2008) Short tandem repeats in human exons: a target for disease mutations. BMC Genomics 9:410PubMedCrossRefGoogle Scholar
  51. May CA, Tamaki K, Neumann R, Wilson G, Zagars G, Pollack A, Dubrova YE, Jeffreys AJ, Meistrich ML (2000) Minisatellite mutation frequency in human sperm following radiotherapy. Mutat Res 453:67–75PubMedGoogle Scholar
  52. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940PubMedCrossRefGoogle Scholar
  53. Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manag Assoc 54:644–680PubMedGoogle Scholar
  54. Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P, Deal C (1998) The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 273:14158–14164PubMedCrossRefGoogle Scholar
  55. Paracchini V, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E (2005) GSTM1 deletion modifies the levels of polycyclic aromatic hydrocarbon-DNA adducts in human sperm. Mutat Res 586:97–101PubMedGoogle Scholar
  56. Podlutsky A, Hou SM, Nyberg F, Pershagen G, Lambert B (1999) Influence of smoking and donor age on the spectrum of in vivo mutation at the HPRT-locus in T lymphocytes of healthy adults. Mutat Res 431:325–339PubMedGoogle Scholar
  57. Polychronakos C (2008) Common and rare alleles as causes of complex phenotypes. Curr Atheroscler Rep 10:194–200PubMedCrossRefGoogle Scholar
  58. Reamon-Buettner SM, Borlak J (2007) A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reprod Toxicol 24:20–30PubMedCrossRefGoogle Scholar
  59. Ritz B, Wilhelm M (2008) Ambient air pollution and adverse birth outcomes: methodologic issues in an emerging field. Basic Clin Pharmacol Toxicol 102:182–190PubMedGoogle Scholar
  60. Ritz B, Yu F, Fruin S, Chapa G, Shaw GM, Harris JA (2002) Ambient air pollution and risk of birth defects in southern California. Am J Epidemiol 155:17–25PubMedCrossRefGoogle Scholar
  61. Robbins WA, Elashoff DA, Xun L, Jia J, Li N, Wu G, Wei F (2005) Effect of lifestyle exposures on sperm aneuploidy. Cytogenet Genome Res 111:371–377PubMedCrossRefGoogle Scholar
  62. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA, Perreault SD (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783PubMedCrossRefGoogle Scholar
  63. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625:20–28PubMedGoogle Scholar
  64. Sadamoto S, Suzuki S, Kamiya K, Kominami R, Dohi K, Niwa O (1994) Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 65:549–557PubMedCrossRefGoogle Scholar
  65. Sanchez-Hernandez JC (2000) Trace element contamination in Antarctic ecosystems. Rev Environ Contam Toxicol 166:83–127PubMedGoogle Scholar
  66. Sanderson EG, Raqbi A, Vyskocil A, Farant J-P (2004) Comparison of particulate polycyclic aromatic hydrocarbon profiles in different regions of Canada. Atmos Environ 38:3417–3429CrossRefGoogle Scholar
  67. Selevan SG, Borkovec L, Slott VL, Zudová Z, Rubes J, Evenson DP, Perreault SD (2000) Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ Health Perspect 108:887–894PubMedCrossRefGoogle Scholar
  68. Singh R, Sram RJ, Binkova B, Kalina I, Popov TA, Georgieva T, Garte S, Taioli E, Farmer PB (2007) The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. Mutat Res 620:83–92PubMedGoogle Scholar
  69. Siwash P, Ganesh S (2008) Tandem repeats in human disorders: mechanisms and evolution. Front Biosci 13:4467–4484Google Scholar
  70. Somers CM (2006) Expanded simple tandem repeat (ESTR) mutation induction in the male germline: lessons learned from lab mice. Mutat Res 598:35–49PubMedGoogle Scholar
  71. Somers CM, Yauk CL, White PA, Parfett CL, Quinn JS (2002) Air pollution induces heritable DNA mutations. Proc Natl Acad Sci USA 99:15904–15907PubMedGoogle Scholar
  72. Somers CM, McCarry BE, Malek F, Quinn JS (2004a) Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304:1008–1010PubMedCrossRefGoogle Scholar
  73. Somers CM, Sharma R, Quinn JS, Boreham DR (2004b) Gamma-radiation induced heritable mutations at repetitive DNA loci in out-bred mice. Mutat Res 568:69–78PubMedGoogle Scholar
  74. Somers CM, Kwiecien JM, Quinn JS (2005) A marine fish diet reduces spontaneous lymphoma in out-bred Swiss-Webster mice. Leuk Lymphoma 46:1797–1800PubMedCrossRefGoogle Scholar
  75. Somers CM, Valdes EV, Quinn JS (2006) An approach to feeding high percentage fish diets to mice for human and wildlife toxicology studies. Ecotoxicol Environ Saf 63:481–487PubMedCrossRefGoogle Scholar
  76. Somers CM, Valdes EV, Kjoss VA, Vaillancourt AL, Quinn JS (2008) Influence of a contaminated fish diet on germline expanded-simple-tandem-repeat mutation fequency in mice. Environ Mol Mutagen 49:238–248PubMedCrossRefGoogle Scholar
  77. Tamimi RM, Hankinson SE, Ding S, Gagalang V, Larson GP, Spiegelman D, Colditz GA, Krontiris TG, Hunter DJ (2003) The HRAS1 variable number of tandem repeats and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12:1528–1530PubMedGoogle Scholar
  78. Thongsanit P, Jinsart W, Hooper B, Limpaseni W (2003) Atmospheric particulate matter and polycyclic aromatic hydrocarbons for PM10 and size-segregated samples in Bangkok. J Air Waste Manag Assoc 53:1490–1498PubMedGoogle Scholar
  79. Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18:1011–1019PubMedCrossRefGoogle Scholar
  80. Vasconcellos PC, Zacarias D, Pires MAF, Pool CS, Carvalho LRF (2003) Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo City, Brazil. Atmos Environ 37:3009–3018CrossRefGoogle Scholar
  81. Verhofstad N, Linschooten JO, van Benthem J, Dubrova YE, van Steeg H, van Schooten FJ, Godschalk RW (2008) New methods for assessing male germ line mutations in humans and genetic risks in their offspring. Mutagenesis 23:241–247PubMedCrossRefGoogle Scholar
  82. Vilariño-Güell C, Smith AG, Dubrova YE (2003) Germline mutation induction at mouse repeat DNA loci by chemical mutagens. Mutat Res 526:63–73PubMedGoogle Scholar
  83. Vineis P, Husgafvel-Pursiainen K (2005) Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 26:1846–1855PubMedCrossRefGoogle Scholar
  84. Weitzel JN, Ding S, Larson GP, Nelson RA, Goodman A, Grendys EC, Ball HG, Krontiris TG (2000) The HRAS1 minisatellite locus and risk of ovarian cancer. Cancer Res 60:259–261PubMedGoogle Scholar
  85. Weseloh DV, Pekarik C, De Solla SR (2006) Spatial patterns and rankings of contaminant concentrations in herring gull eggs from 15 sites in the Great Lakes and connecting channels, 1998–2002. Environ Monit Assess 113:265–284PubMedCrossRefGoogle Scholar
  86. Yang IA, Fong KM, Zimmerman PV, Holgate ST, Holloway JW (2008) Genetic susceptibility to the respiratory effects of air pollution. Thorax 63:555–563PubMedCrossRefGoogle Scholar
  87. Yauk C (1998) Monitoring for induced heritable mutations in natural populations: application of minisatellite DNA screening. Mutat Res 411:1–10PubMedCrossRefGoogle Scholar
  88. Yauk CL (2004) Advances in the application of germline tandem repeat instability for in situ monitoring. Mutat Res 566:169–182PubMedCrossRefGoogle Scholar
  89. Yauk CL, Quinn JS (1996) Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc Natl Acad Sci USA 93:12137–12141PubMedCrossRefGoogle Scholar
  90. Yauk CL, Fox GA, McCarry BE, Quinn JS (2000) Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res 452:211–218PubMedGoogle Scholar
  91. Yauk CL, Dubrova YE, Grant GR, Jeffreys AJ (2002) A novel single molecule analysis of spontaneous and radiation-induced mutation at a mouse tandem repeat locus. Mutat Res 500:147–156PubMedGoogle Scholar
  92. Yauk CL, Berndt ML, Williams A, Rowan-Carroll A, Douglas GR, Stämpfli MR (2007) Mainstream tobacco smoke causes paternal germ-line DNA mutation. Cancer Res 67:5103–5106PubMedCrossRefGoogle Scholar
  93. Yauk CL, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O (2008a) Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci USA 105:605–610PubMedCrossRefGoogle Scholar
  94. Yauk CL, Polyzos A, Rowan-Carroll A, Kortubash I, Williams A, Kovalchuk O (2008b) Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environ Mol Mutagen 49:26–35PubMedCrossRefGoogle Scholar
  95. Zheng N, Monckton DG, Wilson G, Hagemeister F, Chakraborty R, Connor TH, Siciliano MJ, Meistrich ML (2000) Frequency of minisatellite repeat number changes at the MS205 locus in human sperm before and after cancer chemotherapy. Environ Mol Mutagen 36:134–145PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Biology DepartmentUniversity of ReginaReginaCanada
  2. 2.School of Medicine, Institute of Medical GeneticsCardiff UniversityCardiffUK

Personalised recommendations