Human Genetics

, 125:63

Pathways-based analyses of whole-genome association study data in bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission

Original Investigation

Abstract

Despite known heritability, the complex genetic architecture of bipolar disorder (likely including trait, locus and allelic heterogeneity, as well as genetic interactions) has confounded genetic discovery for many years. Even modern day whole genome association studies (WGAS) using over half a million common SNPs have implicated only a handful of genes at the genomewide level. Temporally coincident with this series of WGAS, a host of pathways-based analyses (PBAs) have emerged as novel computational approaches in the examination of large-scale datasets, but thus far rarely have been applied to WGAS data in psychiatric disorders. Here, we report a series of PBAs conducted using exploratory visual analysis, an analytic and visualization software tool for examining genomic data, to examine results from the National Institutes of Mental Health and Wellcome-Trust Case Control Consortium WGAS in bipolar disorder. Consistent with a host of prior linkage findings, some candidate gene association studies, and recent WGAS, our strongest findings suggest involvement of ion channel structural and regulatory genes, including voltage-gated ion channels and the broader ion channel group that comprises both voltage- and ligand-gated channels. Moreover, we found only modest overlap in the particular genes driving the significance of these gene sets across the analyses. This observation strongly suggests that variation in ion channel genes, as a class of genes, may contribute to the susceptibility of bipolar disorder and that heterogeneity may figure prominently in the genetic architecture of this susceptibility.

Supplementary material

439_2008_600_MOESM1_ESM.doc (274 kb)
Supplementary Material (DOC 274 kb)

References

  1. Abdolmaleky HM, Smith CL, Zhou JR, Thiagalingam S (2008) Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Methods Mol Biol 448:187–212PubMedCrossRefGoogle Scholar
  2. Abernethy DR, Soldatov NM (2002) Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. J Pharmacol Exp Ther 300:724–728PubMedCrossRefGoogle Scholar
  3. Akagawa K, Watanabe M, Tsukada Y (1980) Activity of erythrocyte Na, K-ATPase in manic patients. J Neurochem 35:258–260PubMedCrossRefGoogle Scholar
  4. Anderson PA, Greenberg RM (2001) Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol 129:17–28PubMedCrossRefGoogle Scholar
  5. Askland K (2006) Toward a biaxial model of “bipolar” affective disorders: further exploration of genetic, molecular and cellular substrates. J Affect Disord 94:35–66PubMedCrossRefGoogle Scholar
  6. Askland K, Parsons M (2006) Toward a biaxial model of “bipolar” affective disorders: spectrum phenotypes as the products of neuroelectrical and neurochemical alterations. J Affect Disord 94:15–33PubMedCrossRefGoogle Scholar
  7. Bahi-Buisson N, Eisermann M, Nivot S, Bellanne-Chantelot C, Dulac O, Bach N, Plouin P, Chiron C, de Lonlay P (2007) Infantile spasms as an epileptic feature of DEND syndrome associated with an activating mutation in the potassium adenosine triphosphate (ATP) channel, Kir6.2. J Child Neurol 22:1147–1150PubMedCrossRefGoogle Scholar
  8. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nothen MM, Georgi A, Schumacher J, Schwarz M, Abou Jamra R, Hofels S, Propping P, Satagopan J, Detera-Wadleigh SD, Hardy J, McMahon FJ (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197–207PubMedCrossRefGoogle Scholar
  9. Bloom FE (1984) The functional significance of neurotransmitter diversity. Am J Physiol 246:C184–C194PubMedGoogle Scholar
  10. Bracey K, Wray D (2006) Inherited Disorders of Ion Channels. In: Triggle DJ, Gopalakrishnan M, Rampe D, Zheng W (eds) Voltage-Gated Ion Channels as Drug Targets, vol 29. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  11. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, Venturi P, Jones LA, Lewis SW, Sham PC, Gottesman II, Farmer AE, McGuffin P, Reveley AM, Murray RM (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56:162–168PubMedCrossRefGoogle Scholar
  12. Castro MJ, Stam AH, Lemos C, Barros J, Gouveia RG, Martins IP, Koenderink JB, Vanmolkot KR, Mendes AP, Frants RR, Ferrari MD, Sequeiros J, Pereira-Monteiro JM, van den Maagdenberg AM (2007) Recurrent ATP1A2 mutations in Portuguese families with familial hemiplegic migraine. J Hum Genet 52:990–998PubMedCrossRefGoogle Scholar
  13. Chandy KG, Wulff H, Beeton C, Calbresi PA, Gutman GA, Pennington M (2006) Kv1.3 potassium channel: physiology, pharmacology and therapeutic indications. In: Triggle DJ, Gopalakrishnan M, Rampe D, Zheng W (eds) Voltage-gated ion channels as drug targets, vol 29. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 214–274Google Scholar
  14. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA, Matsui S, Conroy J, McQuaid D, Gergel J, Hatchwell E, Gilliam TC, Gershon ES, Nowak NJ, Dobyns WB, Cook EH Jr (2008) Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry 63:1111–1117PubMedCrossRefGoogle Scholar
  15. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–377PubMedCrossRefGoogle Scholar
  16. Doering CJ, Zamponi GW (2005) Molecular pharmacology of non-L-type calcium channels. Curr Pharm Des 11:1887–1898PubMedCrossRefGoogle Scholar
  17. Fernandez DM, Hand CK, Sweeney BJ, Parfrey NA (2008) A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred. Headache 48:101–108PubMedGoogle Scholar
  18. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, Macintyre DJ, Maclean AW, St Clair D, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Nicol Ferrier I, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat GenetGoogle Scholar
  19. Freudenberg J, Fu YH, Ptacek LJ (2007) Bioinformatic analysis of human CNS-expressed ion channels as candidates for episodic nervous system disorders. Neurogenetics 8:159–168PubMedCrossRefGoogle Scholar
  20. Gargus JJ (2006) Ion channel functional candidate genes in multigenic neuropsychiatric disease. Biol Psychiatry 60:177–185PubMedCrossRefGoogle Scholar
  21. Graves TD (2006) Ion channels and epilepsy. QJM 99:201–217PubMedCrossRefGoogle Scholar
  22. Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+, K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149PubMedCrossRefGoogle Scholar
  23. Haavik J, Blau N, Thony B (2008) Mutations in human monoamine-related neurotransmitter pathway genes. Hum MutatGoogle Scholar
  24. Hahne F, Mehrle A, Arlt D, Poustka A, Wiemann S, Beissbarth T (2008) Extending pathways based on gene lists using InterPro domain signatures. BMC Bioinformatics 9:3PubMedCrossRefGoogle Scholar
  25. Hokin-Neaverson M, Jefferson JW (1989) Erythrocyte sodium pump activity in bipolar affective disorder and other psychiatric disorders. Neuropsychobiology 22:1–7PubMedCrossRefGoogle Scholar
  26. Huang D, Chow TW (2007) Identifying the biologically relevant gene categories based on gene expression and biological data: an example on prostate cancer. Bioinformatics 23:1503–1510PubMedCrossRefGoogle Scholar
  27. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T, Takahashi N, Ozaki N, Arinami T (2008) Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet Genomics 18:317–323PubMedCrossRefGoogle Scholar
  28. Jones I, Craddock N (2001) Candidate gene studies of bipolar disorder. Ann Med 33:248–256PubMedCrossRefGoogle Scholar
  29. Kordeli E, Lambert S, Bennett V, Ankyrin G (1995) A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 270:2352–2359PubMedCrossRefGoogle Scholar
  30. Kors EE, van den Maagdenberg AM, Plomp JJ, Frants RR, Ferrari MD (2002) Calcium channel mutations and migraine. Curr Opin Neurol 15:311–316PubMedCrossRefGoogle Scholar
  31. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI Jr, Faraone SV, Tsuang MT, Niculescu AB (2007a) Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 144B:129–158PubMedCrossRefGoogle Scholar
  32. Le-Niculescu H, McFarland MJ, Mamidipalli S, Ogden CA, Kuczenski R, Kurian SM, Salomon DR, Tsuang MT, Nurnberger JI Jr, Niculescu AB (2007b) Convergent functional genomics of bipolar disorder: from animal model pharmacogenomics to human genetics and biomarkers. Neurosci Biobehav Rev 31:897–903PubMedCrossRefGoogle Scholar
  33. Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, Kucherlapati R, Malhotra AK (2007a) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 104:19942–19947PubMedCrossRefGoogle Scholar
  34. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, Kucherlapati R, Malhotra AK (2007b) Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 12:572–580PubMedCrossRefGoogle Scholar
  35. Lewinger JP, Lee SS, Biernacka J, Wu LY, Shi HS, Bull SB (2005) Comparison of family-based association tests in chromosome regions selected by linkage-based confidence intervals. BMC Genet 6(Suppl 1):S62PubMedCrossRefGoogle Scholar
  36. Lopes Aguiar C, Romcy-Pereira RN, Escorsim Szawka R, Galvis-Alonso OY, Anselmo-Franci JA, Pereira Leite J (2008) Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal–prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems. Neuroscience 153:1309–1319PubMedCrossRefGoogle Scholar
  37. MacFarlane SN, Levitan IB (2001) Unzipping ion channels. Sci STKE 2001: PE1Google Scholar
  38. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369PubMedCrossRefGoogle Scholar
  39. McClellan JM, Susser E, King MC (2007) Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 190:194–199PubMedCrossRefGoogle Scholar
  40. Mechaly I, Scamps F, Chabbert C, Sans A, Valmier J (2005) Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells. Neuroscience 130:389–396PubMedCrossRefGoogle Scholar
  41. Meisler MH, Kearney JA, Sprunger LK, MacDonald BT, Buchner DA, Escayg A (2002) Mutations of voltage-gated sodium channels in movement disorders and epilepsy. Novartis Found Symp 241:72–81, discussion 82–6, 226–32PubMedCrossRefGoogle Scholar
  42. Meyer J, Johannssen K, Freitag CM, Schraut K, Teuber I, Hahner A, Mainhardt C, Mossner R, Volz HP, Wienker TF, McKeane D, Stephan DA, Rouleau G, Reif A, Lesch KP (2005) Rare variants of the gene encoding the potassium chloride co-transporter 3 are associated with bipolar disorder. Int J Neuropsychopharmacol 8:495–504PubMedCrossRefGoogle Scholar
  43. Mokrovic G, Matosic A, Hranilovic D, Stefulj J, Novokmet M, Oreskovic D, Balija M, Marusic S, Cicin-Sain L (2008) Alcohol dependence and polymorphisms of serotonin-related genes: association studies. Coll Antropol 32(Suppl 1):127–131PubMedGoogle Scholar
  44. Mossner R, Weichselbaum A, Marziniak M, Freitag CM, Lesch KP, Sommer C, Meyer J (2005) A highly polymorphic poly-glutamine stretch in the potassium channel KCNN3 in migraine. Headache 45:132–136PubMedCrossRefGoogle Scholar
  45. Mynett-Johnson L, Murphy V, McCormack J, Shields DC, Claffey E, Manley P, McKeon P (1998) Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 44:47–51PubMedCrossRefGoogle Scholar
  46. Nappi G, Costa A, Tassorelli C, Santorelli FM (2000) Migraine as a complex disease: heterogeneity, comorbidity and genotype–phenotype interactions. Funct Neurol 15:87–93PubMedGoogle Scholar
  47. Newton JR (2007) Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders. Psychiatr Genet 17:29–34PubMedCrossRefGoogle Scholar
  48. Niculescu AB 3rd, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR (2000) Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 4:83–91PubMedGoogle Scholar
  49. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 9:1007–1029PubMedCrossRefGoogle Scholar
  50. Patrick RL (2000) Synaptic clefts are made to be crossed: neurotransmitter signaling in the central nervous system. Toxicol Pathol 28:31–36PubMedCrossRefGoogle Scholar
  51. Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B, Pevny L, Stewart CL, Xu X, Chiu SY, Shrager P, Furley AJ, Peles E (2003) Juxtaparanodal clustering of Shaker-like K + channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162:1149–1160PubMedCrossRefGoogle Scholar
  52. Pruitt KD, Maglott DR (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 29:137–140PubMedCrossRefGoogle Scholar
  53. Reif DM, Moore JH (2006) Visual analysis of statistical results from microarray studies of human breast cancer. Oncol Rep 15:1043–1047PubMedGoogle Scholar
  54. Reif DM, Dudek SM, Shaffer CM, Wang J, Moore JH (2005) Exploratory visual analysis of pharmacogenomic results. Pac Symp Biocomput 10:296–307CrossRefGoogle Scholar
  55. Reif DM, Israel MA, Moore JH (2007) Exploratory visual analysis of statistical results from microarray experiments comparing high and low grade clioma. Cancer Informatics 2:19–24Google Scholar
  56. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19PubMedCrossRefGoogle Scholar
  57. Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26:458–469PubMedCrossRefGoogle Scholar
  58. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449PubMedCrossRefGoogle Scholar
  59. Seng KC, Seng CK (2008) The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet 16:554–564PubMedCrossRefGoogle Scholar
  60. Shriner D, Baye TM, Padilla MA, Zhang S, Vaughan LK, Loraine AE (2008) Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies. Nucleic Acids Res 36:e26PubMedCrossRefGoogle Scholar
  61. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569PubMedCrossRefGoogle Scholar
  62. Sprang S (2001) GEFs: master regulators of G-protein activation. Trends Biochem Sci 26:266–267PubMedCrossRefGoogle Scholar
  63. Strong M, Chandy KG, Gutman GA (1993) Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol Biol Evol 10:221–242PubMedGoogle Scholar
  64. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550PubMedCrossRefGoogle Scholar
  65. Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H, Chowdari KV, Milanova V, Wood J, McClain L, Prasad K, Shirts B, Zhang J, O’Donovan MC, Owen MJ, Devlin B, Nimgaonkar VL (2008) A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet 17:747–758PubMedCrossRefGoogle Scholar
  66. The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  67. Triggle DJ, Gopalakrishnan M, Rampe D, Zheng W (2006) Voltage-Gated Ion Channels as Drug Targets. In: Mannhold R, Kubinyi H, Folkers G (eds) Methods and Principles in Medicial Chemistry, vol 29. Wiley-VCH Verlag GmbH & Co., WeinheimGoogle Scholar
  68. Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519PubMedCrossRefGoogle Scholar
  69. Vanyukov MM, Maher BS, Devlin B, Kirillova GP, Kirisci L, Yu LM, Ferrell RE (2007) The MAOA promoter polymorphism, disruptive behavior disorders, and early onset substance use disorder: gene-environment interaction. Psychiatr Genet 17:323–332PubMedCrossRefGoogle Scholar
  70. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543PubMedCrossRefGoogle Scholar
  71. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet, vol 81Google Scholar
  72. Waxman SG (2000) The neuron as a dynamic electrogenic machine: modulation of sodium-channel expression as a basis for functional plasticity in neurons. Philos Trans R Soc Lond B Biol Sci 355:199–213PubMedCrossRefGoogle Scholar
  73. Waxman SG, Dib-Hajj S, Cummins TR, Black JA (2000) Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states(1). Brain Res 886:5–14PubMedCrossRefGoogle Scholar
  74. Waxman SG, Cummins TR, Black JA, Dib-Hajj S (2002) Diverse functions and dynamic expression of neuronal sodium channels. Novartis Found Symp 241:34–51, discussion 51–60PubMedCrossRefGoogle Scholar
  75. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8:186–194PubMedCrossRefGoogle Scholar
  76. Wittekindt O, Jauch A, Burgert E, Scharer L, Holtgreve-Grez H, Yvert G, Imbert G, Zimmer J, Hoehe MR, Macher JP, Chiaroni P, van Calker D, Crocq MA, Morris-Rosendahl DJ (1998) The human small conductance calcium-regulated potassium channel gene (hSKCa3) contains two CAG repeats in exon 1, is on chromosome 1q21.3, and shows a possible association with schizophrenia. Neurogenetics 1:259–265PubMedCrossRefGoogle Scholar
  77. Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456PubMedGoogle Scholar
  78. Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM (2006) WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 7:30PubMedCrossRefGoogle Scholar
  79. Yu W, Wulf A, Yesupriya A, Clyne M, Khoury MJ, Gwinn M (2008) HuGE Watch: tracking trends and patterns of published studies of genetic association and human genome epidemiology in near-real time. Eur J Hum Genet 16:1155–1158. Accessed 9 March 2008PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown University, Butler HospitalProvidenceUSA
  2. 2.OCD Research GroupButler HospitalProvidenceUSA
  3. 3.Department of GeneticsDartmouth Medical SchoolHanoverUSA

Personalised recommendations