Human Genetics

, Volume 124, Issue 6, pp 615–623 | Cite as

A novel hypomorphic MECP2 point mutation is associated with a neuropsychiatric phenotype

  • Abidemi A. Adegbola
  • Michael L. Gonzales
  • Andrew Chess
  • Janine M. LaSalle
  • Gerald F. Cox
Original Investigation


The MECP2 gene on Xq28 encodes a transcriptional repressor, which binds to and modulates expression of active genes. Mutations in MECP2 cause classic or preserved speech variant Rett syndrome and intellectual disability in females and early demise or marked neurodevelopmental handicap in males. The consequences of a hypomorphic Mecp2 allele were recently investigated in a mouse model, which developed obesity, motor, social, learning, and behavioral deficits, predicting a human neurobehavioral syndrome. Here, we describe mutation analysis of a nondysmorphic female proband and her father who presented with primarily neuropsychiatric manifestations and obesity with relative sparing of intelligence, language, growth, and gross motor skills. We identified and characterized a novel missense mutation (c.454C>G; p.P152A) in the critical methyl-binding domain of MeCP2 that disrupts MeCP2 functional activity. We show that a gradient of impairment is present when the p.P152A mutation is compared with an allelic p.P152R mutation, which causes classic Rett syndrome and another Rett syndrome-causing mutation, such that protein–heterochromatin binding observed by immunofluorescence and immunoblotting is wild-type > P152A > P152R > T158 M, consistent with the severity of the observed phenotype. Our findings provide evidence for very mild phenotypes in humans associated with partial reduction of MeCP2 function arising from subtle variation in MECP2.



We would like to thank Jennifer Gentile and Susan Waisbren for neuropsychological testing and Yiping Shen for his help with MECP2 controls. Abidemi Adegbola was supported by an NIH (NIGMS) grant (grant number T32 GM007748). Michael Gonzales was supported by an NIH (NIMH) grant (grant number T32MH073124). Janine Lasalle was supported by NIH (NICHD) grants (grants numbers R01HD041462 and R01HD048799).


  1. Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47:670–679PubMedCrossRefGoogle Scholar
  2. Archer H, Evans J, Leonard H, Colvin L, Ravine D, Christodoulou J, Williamson S, Charman T, Bailey ME, Sampson J, de Klerk N, Clarke A (2007) Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J Med Genet 44:148–152PubMedCrossRefGoogle Scholar
  3. Auranen M, Vanhala R, Vosman M, Levander M, Varilo T, Hietala M, Riikonen R, Peltonen L, Järvelä I (2001) MECP2 gene analysis in classical Rett syndrome and in patients with Rett-like features. Neurology 56:611–617PubMedGoogle Scholar
  4. Ballestar E, Yusufzai TM, Wolffe AP (2000) Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 39:7100–7106PubMedCrossRefGoogle Scholar
  5. Bao X, Jiang S, Song F, Pan H, Li M, Wu XR (2008) X chromosome inactivation in Rett Syndrome and its correlations with MECP2 mutations and phenotype. J Child Neurol 23:22–25Google Scholar
  6. Bebbington A, Anderson A, Ravine D, Fyfe S, Pineda M, de Klerk N, Ben-Zeev B, Yatawara N, Percy A, Kaufmann WE, Leonard H (2008) Investigating genotype–phenotype relationships in Rett syndrome using an international data set. Neurology 70:868–875PubMedCrossRefGoogle Scholar
  7. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229PubMedCrossRefGoogle Scholar
  8. Charman T, Neilson TC, Mash V, Archer H, Gardiner MT, Knudsen GP, McDonnell A, Perry J, Whatley SD, Bunyan DJ, Ravn K, Mount RH, Hastings RP, Hulten M, Orstavik KH, Reilly S, Cass H, Clarke A, Kerr AM, Bailey ME (2005) Dimensional phenotypic analysis and functional categorisation of mutations reveal novel genotype–phenotype associations in Rett syndrome. Eur J Hum Genet 13:1121–1130PubMedCrossRefGoogle Scholar
  9. Cheadle JP, Gill H, Fleming N, Maynard J, Kerr A, Leonard H, Krawczak M, Cooper DN, Lynch S, Thomas N, Hughes H, Hulten M, Ravine D, Sampson JR, Clarke A (2000) Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum Mol Genet 12:1119–1129CrossRefGoogle Scholar
  10. Christodoulou J, Grimm A, Maher T, Bennetts B (2003) RettBASE: the IRSA MECP2 variation database—a new mutation database in evolution. Hum Mutat 21:466–472PubMedCrossRefGoogle Scholar
  11. Clayton-Smith J, Watson P, Ramsden S, Black GC (2000) Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 356:830–832PubMedCrossRefGoogle Scholar
  12. Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, David Sweatt J, Zoghbi HY (2004) Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 13:2679–2689PubMedCrossRefGoogle Scholar
  13. Couvert P, Bienvenu T, Aquaviva C, Poirier K, Moraine C, Gendrot C, Verloes A, Andrès C, Le Fevre AC, Souville I, Steffann J, des Portes V, Ropers HH, Yntema HG, Fryns JP, Briault S, Chelly J, Cherif B (2001) MECP2 is highly mutated in X-linked mental retardation. Hum Mol Genet 10:941–946PubMedCrossRefGoogle Scholar
  14. del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, Neul JL, Patel A, Lee JA, Irons M, Berry SA, Pursley AA, Grebe TA, Freedenberg D, Martin RA, Hsich GE, Khera JR, Friedman NR, Zoghbi HY, Eng CM, Lupski JR, Beaudet AL, Cheung SW, Roa BB (2006) Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 8:784–792PubMedCrossRefGoogle Scholar
  15. Dotti MT, Orrico A, De Stefano N, Battisti C, Sicurelli F, Severi S, Lam CW, Galli L, Sorrentino V, Federico A (2002) A Rett syndrome MECP2 mutation that causes mental retardation in men. Neurology 22:226–230Google Scholar
  16. Erlandson A, Hagberg B (2005) MECP2 abnormality phenotypes: clinicopathologic area with broad variability. J Child Neurol 20:727–732PubMedGoogle Scholar
  17. Gendrot C, Ronce N, Raynaud M, Ayrault AD, Dourlens J, Castelnau P, Muh JP, Chelly J, Moraine C (1999) X-linked nonspecific mental retardation (MRX16) mapping to distal Xq28: linkage study and neuropsychological data in a large family. Am J Med Genet 23:411–418CrossRefGoogle Scholar
  18. Hagberg BA, Skjeldal OH (1994) Rett variants: a suggested model for inclusion criteria. Pediatr Neurol 11:5–11PubMedCrossRefGoogle Scholar
  19. Hagberg B, Hanefeld F, Percy A, Skjeldal O (2002) An update on clinically applicable diagnostic criteria in Rett syndrome. Comments to Rett Syndrome Clinical Criteria Consensus Panel Satellite to European Paediatric Neurology Society Meeting, Baden Baden, Germany, 11 September 2001. Eur J Paediatr Neurol 6:293–297PubMedCrossRefGoogle Scholar
  20. Hoffbuhr K, Devaney JM, LaFleur B, Sirianni N, Scacheri C, Giron J, Schuette J, Innis J, Marino M, Philippart M, Narayanan V, Umansky R, Kronn D, Hoffman EP, Naidu S (2001) MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 56:1486–1495PubMedGoogle Scholar
  21. Huppke P, Laccone F, Krämer N, Engel W, Hanefeld F (2000) Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum Mol Genet 9:1369–1375PubMedCrossRefGoogle Scholar
  22. Huppke P, Held M, Hanefeld F, Engel W, Laccone F (2002) Influence of mutation type and location on phenotype in 123 patients with Rett syndrome. Neuropediatrics 33:63–68PubMedCrossRefGoogle Scholar
  23. Huppke P, Köhler K, Brockmann K, Stettner GM, Gärtner J (2007) Treatment of epilepsy in Rett syndrome. Eur J Pediatr Neurol 11:10–16CrossRefGoogle Scholar
  24. Kerr B, Alvarez-Saavedra M, Sáez MA, Saona A, Young JI (2008) Defective body-weight regulation, motor control and abnormal social interactions in Mecp2 hypomorphic mice. Hum Mol Genet 17:1707–1717PubMedCrossRefGoogle Scholar
  25. Kim B, Rincón Castro LM, Jawed S, Niles LP (2008) Clinically relevant concentrations of valproic acid modulate melatonin MT(1) receptor, HDAC and MeCP2 mRNA expression in C6 glioma cells. Eur J Pharmacol 589:45–48PubMedCrossRefGoogle Scholar
  26. Klauck SM, Lindsay S, Beyer KS, Splitt M, Burn J, Poustka A (2002) A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. Am J Hum Genet 70:1034–1037PubMedCrossRefGoogle Scholar
  27. Kudo S, Nomura Y, Segawa M, Fujita N, Nakao M, Schanen C, Tamura M (2003) Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. J Med Genet 40:487–493PubMedCrossRefGoogle Scholar
  28. Kumar A, Kamboj S, Malone BM, Kudo S, Twiss JL, Czymmek KJ, Lasalle JM, Schanen NC (2008) Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J Cell Sci 121:1128–1137PubMedCrossRefGoogle Scholar
  29. Leonard H, Silberstein J, Falk R, Houwink-Manville I, Ellaway C, Raffaele LS, Engerström IW, Schanen C (2001) Occurrence of Rett syndrome in boys. J Child Neurol 16:333–338PubMedGoogle Scholar
  30. Nan X, Tate P, Li E, Bird A (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16:414–421PubMedGoogle Scholar
  31. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389PubMedCrossRefGoogle Scholar
  32. Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70:1313–1321PubMedCrossRefGoogle Scholar
  33. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874PubMedCrossRefGoogle Scholar
  34. Nielsen JB, Henriksen KF, Hansen C, Silahtaroglu A, Schwartz M, Tommerup N (2001) MECP2 mutations in Danish patients with Rett syndrome: high frequency of mutations but no consistent correlations with clinical severity or with the X chromosome inactivation pattern. Eur J Hum Genet 3:178–184CrossRefGoogle Scholar
  35. Orrico A, Lam C, Galli L, Dotti MT, Hayek G, Tong SF, Poon PM, Zappella M, Federico A, Sorrentino V (2000) MECP2 mutation in male patients with non-specific X-linked mental retardation. FEBS Lett 481:285–288PubMedCrossRefGoogle Scholar
  36. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900PubMedCrossRefGoogle Scholar
  37. Renieri A, Mari F, Mencarelli MA, Scala E, Ariani F, Longo I, Meloni I, Cevenini G, Pini G, Hayek G, Zappella M (2008) Diagnostic criteria for the Zappella variant of Rett syndrome (the preserved speech variant). Brain Dev. doi: 10.1016/j.braindev.2008.04.007
  38. Samaco RC, Fryer JD, Ren J, Fyffe S, Chao HT, Sun Y, Greer JJ, Zoghbi HY, Neul JL (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17:1718–1727PubMedCrossRefGoogle Scholar
  39. Scala E, Longo I, Ottimo F, Speciale C, Sampieri K, Katzaki E, Artuso R, Mencarelli MA, D’Ambrogio T, Vonella G, Zappella M, Hayek G, Battaglia A, Mari F, Renieri A, Ariani F (2007) MECP2 deletions and genotype–phenotype correlation in Rett syndrome. Am J Med Genet A 143A:2775–2784PubMedCrossRefGoogle Scholar
  40. Topçu M, Akyerli C, Sayi A, Törüner GA, Koçoğlu SR, Cimbiş M, Ozçelik T (2002) Somatic mosaicism for a MECP2 mutation associated with classic Rett syndrome in a boy. Eur J Hum Genet 10:77–81PubMedCrossRefGoogle Scholar
  41. Villard L, Kpebe A, Cardoso C, Chelly PJ, Tardieu PM, Fontes M (2000) Two affected boys in a Rett syndrome family: clinical and molecular findings. Neurology 55:1188–1193PubMedGoogle Scholar
  42. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF, Zoghbi HY, Schanen NC, Francke U (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529PubMedCrossRefGoogle Scholar
  43. Weaving LS, Williamson SL, Bennetts B, Davis M, Ellaway CJ, Leonard H, Thong MK, Delatycki M, Thompson EM, Laing N, Christodoulou J (2003) Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am J Med Genet A 118A:103–114PubMedCrossRefGoogle Scholar
  44. Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 104:19416–19421PubMedCrossRefGoogle Scholar
  45. Yusufzai TM, Wolffe AP (2001) Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res 28:4172–4179CrossRefGoogle Scholar
  46. Zappella M, Meloni I, Longo I, Hayek G, Renieri A (2001) Preserved speech variants of the Rett syndrome: molecular and clinical analysis. Am J Med Genet 104:14–22PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Abidemi A. Adegbola
    • 1
    • 2
    • 3
    • 6
  • Michael L. Gonzales
    • 4
  • Andrew Chess
    • 1
    • 2
  • Janine M. LaSalle
    • 4
  • Gerald F. Cox
    • 2
    • 3
    • 5
  1. 1.Center for Human Genetic Research, Department of MedicineMassachusetts General HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Division of Genetics, Department of MedicineChildren’s Hospital BostonBostonUSA
  4. 4.Medical Microbiology and Immunology, Rowe Program in Human Genetics, School of MedicineUniversity of CaliforniaDavisUSA
  5. 5.Department of Clinical ResearchGenzyme CorporationCambridgeUSA
  6. 6.Harvard-Partners Center for Genetics and GenomicsBostonUSA

Personalised recommendations