Human Genetics

, Volume 123, Issue 3, pp 289–295 | Cite as

An insertion/deletion polymorphism of the dihydrofolate reductase (DHFR) gene is associated with serum and red blood cell folate concentrations in women

  • Anna Stanisławska-Sachadyn
  • Karen S. Brown
  • Laura E. Mitchell
  • Jayne V. Woodside
  • Ian S. Young
  • John M. Scott
  • Liam Murray
  • Colin A. Boreham
  • Helene McNulty
  • J. J. Strain
  • Alexander S. Whitehead
Original Investigation

Abstract

A low serum folate and high homocysteine phenotype is associated with an increased risk of neural tube defects (NTDs), cardiovascular diseases and other pathologies. Thus defining both genetic and non-genetic factors that may impact folate/homocysteine metabolism will enhance our understanding of the etiologic mechanisms underlying these conditions and facilitate risk assessment. Dihydrofolate reductase catalyzes the reduction of folic acid to dihydrofolate and thereafter to tetrahydrofolate. The impact of the dihydrofolate reductase (DHFR) c.86 + 60_78 insertion/deletion (ins/del) polymorphism on folate and homocysteine concentrations was analyzed using data from healthy young adults from Northern Ireland, collected as part of visit three of the Young Hearts Project. Among men the DHFR c.86 + 60_78 polymorphism was not significantly associated with serum or red blood cell folate concentrations, or with homocysteine concentrations. Among women the DHFR c.86 + 60_78 polymorphism explained 2% of the variation in RBC folate levels and 5% of the variation in serum folate levels, but did not appear to have an independent effect on homocysteine. Relative to women with the DHFR c.86 + 60_78 ins/ins and ins/del genotypes, del/del homozygotes had increased serum and red blood cell folate concentrations and may therefore be at decreased risk of having offspring affected by NTDs and of other adverse reproductive and health outcomes attributable to low folate.

References

  1. Boreham C, Robson PJ, Gallagher AM, Cran GW, Savage JM, Murray LJ (2004) Tracking of physical activity, fitness, body composition and diet from adolescence to young adulthood: the Young Hearts Project, Northern Ireland. Int J Behav Nutr Phys Act 1:14PubMedCrossRefGoogle Scholar
  2. Boreham C, Savage JM, Primrose D, Cran G, Strain J (1993) Coronary risk factors in schoolchildren. Arch Dis Child 68:182–186PubMedGoogle Scholar
  3. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20PubMedCrossRefGoogle Scholar
  4. Clark IM, Rowan AD, Edwards DR, Bech-Hansen T, Mann DA, Bahr MJ, Cawston TE (1997) Transcriptional activity of the human tissue inhibitor of metalloproteinases 1 (TIMP-1) gene in fibroblasts involves elements in the promoter, exon 1 and intron 1. Biochem J 324:611–617PubMedGoogle Scholar
  5. Gallagher AM, Savage JM, Murray LJ, Davey Smith G, Young IS, Robson PJ, Neville CE, Cran G, Strain JJ, Boreham CA (2002) A longitudinal study through adolescence to adulthood: the Young Hearts Project, Northern Ireland. Public Health 116:332–340PubMedGoogle Scholar
  6. Gellekink H, Blom HJ, van der Linden IJ, den Heijer M (2007) Molecular genetic analysis of the human dihydrofolate reductase gene: relation with plasma total homocysteine, serum and red blood cell folate levels. Eur J Hum Genet 15:103–109PubMedCrossRefGoogle Scholar
  7. Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, Gey KF, Whitehead AS, Evans AE (1996) The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 89:571–577PubMedGoogle Scholar
  8. Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, Selhub J, Rozen R (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93:7–9PubMedGoogle Scholar
  9. Johnson WG, Stenroos ES, Spychala JR, Chatkupt S, Ming SX, Buyske S (2004) New 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR): a risk factor for spina bifida acting in mothers during pregnancy? Am J Med Genet 124:339–345CrossRefGoogle Scholar
  10. Kluijtmans LA, Young IS, Boreham CA, Murray L, McMaster D, McNulty H, Strain JJ, McPartlin J, Scott JM, Whitehead AS (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488PubMedCrossRefGoogle Scholar
  11. Li HW, Gao YX, Raizada MK, Sumners C (2005) Intronic enhancement of angiotensin II type 2 receptor transgene expression in vitro and in vivo. Biochem Biophys Res Commun 336:29–35PubMedCrossRefGoogle Scholar
  12. Lucock M (2000) Folic Acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71:121–138PubMedCrossRefGoogle Scholar
  13. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  14. Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet 345:149–151PubMedCrossRefGoogle Scholar
  15. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364:1885–1895PubMedCrossRefGoogle Scholar
  16. Molloy AM, Scott JM (1997) Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol 281:43–53PubMedCrossRefGoogle Scholar
  17. Nygård O, Refsum H, Ueland PM, Vollset SE (1998) Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 67:263–270PubMedGoogle Scholar
  18. Parle-McDermott A, Pangilinan F, Mills JL, Kirke PN, Gibney ER, Troendle J, O’leary VB, Molloy AM, Conley M, Scott JM, Brody LC (2007) The 19-bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR) may decrease rather than increase risk for spina bifida in the Irish population. Am J Med Genet A 143:1174–1180PubMedGoogle Scholar
  19. Qiao L, Maclean PS, Schaack J, Orlicky DJ, Darimont C, Pagliassotti M, Friedman JE, Shao J (2005) C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes 54:1744–1754PubMedCrossRefGoogle Scholar
  20. Stanisławska-Sachadyn A, Woodside JV, Brown KS, Young IS, Murray L, McNulty H, Strain JJ, Boreham CA, Scott JM, Whitehead AS, Mitchell LE (2008) Evidence for sex differences in the determinants of homocysteine concentrations. Mol Genet Metab (in press)Google Scholar
  21. Takayanagi A, Kaneda S, Ayusawa D, Seno T (1992) Intron 1 and the 5’-flanking region of the human thymidylate synthase gene as a regulatory determinant of growth-dependent expression. Nucleic Acids Res 20:4021–4025PubMedCrossRefGoogle Scholar
  22. Ubbink JB, Hayward Vermaak WJ, Bissbort S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr 565:441–446PubMedCrossRefGoogle Scholar
  23. van der Linden IJ, Nguyen U, Heil SG, Franke B, Vloet S, Gellekink H, Heijer M, Blom HJ (2007) Variation and expression of dihydrofolate reductase (DHFR) in relation to spina bifida. Mol Genet Metab 91:98–103PubMedCrossRefGoogle Scholar
  24. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:1202PubMedCrossRefGoogle Scholar
  25. Wardrop SL, kConFab Investigators, Brown MA (2005) Identification of two evolutionarily conserved and functional regulatory elements in intron 2 of the human BRCA1 gene. Genomics 86:316–328PubMedCrossRefGoogle Scholar
  26. Warnecke C, Willich T, Holzmeister J, Bottari SP, Fleck E, Regitz-Zagrosek V (1999) Efficient transcription of the human angiotensin II type 2 receptor gene requires intronic sequence elements. Biochem J 340:17–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anna Stanisławska-Sachadyn
    • 1
  • Karen S. Brown
    • 1
  • Laura E. Mitchell
    • 2
  • Jayne V. Woodside
    • 3
  • Ian S. Young
    • 3
  • John M. Scott
    • 4
  • Liam Murray
    • 3
  • Colin A. Boreham
    • 5
  • Helene McNulty
    • 6
  • J. J. Strain
    • 6
  • Alexander S. Whitehead
    • 1
  1. 1.Department of Pharmacology and Center for PharmacogeneticsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Institute of Biosciences and TechnologyThe Texas A&M University System, Health Science CenterHoustonUSA
  3. 3.Cardiovascular Research CentreQueen’s University BelfastBelfastNorthern Ireland
  4. 4.Department of Clinical MedicineTrinity CollegeDublinIreland
  5. 5.Institute for Sport and HealthUniversity CollegeDublinIreland
  6. 6.Northern Ireland Centre for Food and HealthUniversity of UlsterColeraineNorthern Ireland

Personalised recommendations