Human Genetics

, Volume 123, Issue 1, pp 65–75

Fine mapping of familial prostate cancer families narrows the interval for a susceptibility locus on chromosome 22q12.3 to 1.36 Mb

  • Bo Johanneson
  • Shannon K. McDonnell
  • Danielle M. Karyadi
  • Scott J. Hebbring
  • Liang Wang
  • Kerry Deutsch
  • Laura McIntosh
  • Erika M. Kwon
  • Miia Suuriniemi
  • Janet L. Stanford
  • Daniel J. Schaid
  • Elaine A. Ostrander
  • Stephen N. Thibodeau
Original Investigation

Abstract

Genetic studies suggest that hereditary prostate cancer is a genetically heterogeneous disease with multiple contributing loci. Studies of high-risk prostate cancer families selected for aggressive disease, analysis of large multigenerational families, and a meta-analysis from the International Consortium for Prostate Cancer Genetics (ICPCG), all highlight chromosome 22q12.3 as a susceptibility locus with strong statistical significance. Recently, two publications have narrowed the 22q12.3 locus to a 2.18 Mb interval using 54 high-risk families from the ICPCG collaboration, as defined by three recombination events on either side of the locus. In this paper, we present the results from fine mapping studies at 22q12.3 using both haplotype and recombination data from 42 high-risk families contributed from the Mayo Clinic and the Prostate Cancer Genetic Research Study (PROGRESS) mapping studies. No clear consensus interval is present when all families are used. However, in the subset of 14 families with ≥5 affected men per family, a 2.53-Mb shared consensus segment that overlaps with the previously published interval is identified. Combining these results with data from the earlier ICPCG study reduces the three-recombination interval at 22q12.3 to approximately 1.36 Mb.

Supplementary material

439_2007_451_MOESM1_ESM.pdf (22 kb)
Name, physical-, genetic-position and primer sequences for each marker (PDF 21.7 kb)

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101PubMedCrossRefGoogle Scholar
  2. Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, Thibodeau SN, Schaid DJ (2000) Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 67:82–91PubMedCrossRefGoogle Scholar
  3. Bratt O (2002) Hereditary prostate cancer: clinical aspects. J Urol 168:906–913PubMedCrossRefGoogle Scholar
  4. Camp NJ, Farnham JM, Cannon Albright LA (2005) Genomic search for prostate cancer predisposition loci in Utah pedigrees. Prostate 65:365–374PubMedCrossRefGoogle Scholar
  5. Camp NJ, Farnham JM, Cannon-Albright LA (2006) Localization of a prostate cancer predisposition gene to an 880-kb region on chromosome 22q12.3 in Utah high-risk pedigrees. Cancer Res 66:10205–10212PubMedCrossRefGoogle Scholar
  6. Camp NJ, Cannon-Albright LA, Farnham JM, Baffoe-Bonnie AB, George A, Powell I, Bailey-Wilson JE, Carpten JD, Giles GG, Hopper JL, Severi G, English DR, Foulkes WD, Maehle L, Moller P, Eeles R, Easton D, Badzioch MD, Whittemore AS, Oakley-Girvan I, Hsieh CL, Dimitrov L, Xu J, Stanford JL, Johanneson B, Deutsch K, McIntosh L, Ostrander EA, Wiley KE, Isaacs SD, Walsh PC, Thibodeau SN, McDonnell SK, Hebbring S, Schaid DJ, Lange EM, Cooney KA, Tammela TL, Schleutker J, Paiss T, Maier C, Gronberg H, Wiklund F, Emanuelsson M, Isaacs WB (2007) Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Hum Mol Genet 16:1271–1278PubMedCrossRefGoogle Scholar
  7. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120PubMedCrossRefGoogle Scholar
  8. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89:3367–3371PubMedCrossRefGoogle Scholar
  9. Chang BL, Isaacs SD, Wiley KE, Gillanders EM, Zheng SL, Meyers DA, Walsh PC, Trent JM, Xu J, Isaacs WB (2005) Genome-wide screen for prostate cancer susceptibility genes in men with clinically significant disease. Prostate 64:356–361PubMedCrossRefGoogle Scholar
  10. Chang BL, Lange EM, Dimitrov L, Valis CJ, Gillanders EM, Lange LA, Wiley KE, Isaacs SD, Wiklund F, Baffoe-Bonnie A, Langefeld CD, Zheng SL, Matikainen MP, Ikonen T, Fredriksson H, Tammela T, Walsh PC, Bailey-Wilson JE, Schleutker J, Gronberg H, Cooney KA, Isaacs WB, Suh E, Trent JM, Xu J (2006) Two-locus genome-wide linkage scan for prostate cancer susceptibility genes with an interaction effect. Hum Genet 118:716–724PubMedCrossRefGoogle Scholar
  11. Chang KW, Lee TC, Yeh WI, Chung MY, Liu CJ, Chi LY, Lin SC (2004) Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br J Ca 91:1551–1554CrossRefGoogle Scholar
  12. Conlon EM, Goode EL, Gibbs M, Stanford JL, Badzioch M, Janer M, Kolb S, Hood L, Ostrander EA, Jarvik GP, Wijsman EM (2003) Oligogenic segregation analysis of hereditary prostate cancer pedigrees: evidence for multiple loci affecting age at onset. Int J Cancer 105:630–635PubMedCrossRefGoogle Scholar
  13. Cook Jr EH (2002) Merlin: faster linkage analysis with improved genotyping error detection. Pharmacogenomics J 2:139–140CrossRefGoogle Scholar
  14. Cui J, Staples MP, Hopper JL, English DR, McCredie MR, Giles GG (2001) Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 68:1207–1218PubMedCrossRefGoogle Scholar
  15. Cunningham JM, McDonnell SK, Marks A, Hebbring S, Anderson SA, Peterson BJ, Slager S, French A, Blute ML, Schaid DJ, Thibodeau SN (2003) Genome linkage screen for prostate cancer susceptibility loci: results from the Mayo Clinic Familial Prostate Cancer Study. Prostate 57:335–3346PubMedCrossRefGoogle Scholar
  16. Cybulski C, Wokolorczyk D, Huzarski T, Byrski T, Gronwald J, Gorski B, Debniak T, Masojc B, Jakubowska A, Gliniewicz B, Sikorski A, Stawicka M, Godlewski D, Kwias Z, Antczak A, Krajka K, Lauer W, Sosnowski M, Sikorska-Radek P, Bar K, Klijer R, Zdrojowy R, Malkiewicz B, Borkowski A, Borkowski T, Szwiec M, Narod SA, Lubinski J (2006) A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J Med Genet 43:863–866PubMedCrossRefGoogle Scholar
  17. Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, Smith DI, Cheville JC, Blute ML, Jacobsen SJ, Schaid DJ, Tindall DJ, Thibodeau SN, Liu W (2003) Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 72:270–280PubMedCrossRefGoogle Scholar
  18. Dorkeld F, Bernheim A, Dessen P, Huret JL (1999) A database on cytogenetics in haematology and oncology. Nucleic Acids Res 27:353–354PubMedCrossRefGoogle Scholar
  19. Easton DF, Schaid DJ, Whittemore AS, Isaacs WJ (2003) Where are the prostate cancer genes?–A summary of eight genome wide searches. Prostate 57:261–269PubMedCrossRefGoogle Scholar
  20. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH (1994) Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86:1600–1608PubMedCrossRefGoogle Scholar
  21. Gong G, Oakley-Girvan I, Wu AH, Kolonel LN, John EM, West DW, Felberg A, Gallagher RP, Whittemore AS (2002) Segregation analysis of prostate cancer in 1,719 white, African–American and Asian–American families in the United States and Canada. Cancer Causes Control 13:471–482PubMedCrossRefGoogle Scholar
  22. Gronberg H, Damber L, Damber JE, Iselius L (1997) Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146:552–557PubMedGoogle Scholar
  23. IHC (2003) The international HapMap project. Nature 426:789–796CrossRefGoogle Scholar
  24. Janer M, Friedrichsen DM, Stanford JL, Badzioch MD, Kolb S, Deutsch K, Peters MA, Goode EL, Welti R, DeFrance HB, Iwasaki L, Li S, Hood L, Ostrander EA, Jarvik GP (2003) Genomic scan of 254 hereditary prostate cancer families. Prostate 57:309–319PubMedCrossRefGoogle Scholar
  25. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66PubMedCrossRefGoogle Scholar
  26. Keetch DW, Rice JP, Suarez BK, Catalona WJ (1995) Familial aspects of prostate cancer: a case control study. J Urol 154:2100–2102PubMedCrossRefGoogle Scholar
  27. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363PubMedGoogle Scholar
  28. Lange EM, Gillanders EM, Davis CC, Brown WM, Campbell JK, Jones M, Gildea D, Riedesel E, Albertus J, Freas-Lutz D, Markey C, Giri V, Dimmer JB, Montie JE, Trent JM, Cooney KA (2003) Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57:326–334PubMedCrossRefGoogle Scholar
  29. Markianos K, Daly MJ, Kruglyak L (2001) Efficient multipoint linkage analysis through reduction of inheritance space. Am J Hum Genet 68:963–977PubMedCrossRefGoogle Scholar
  30. McIndoe RA, Stanford JL, Gibbs M, Jarvik GP, Brandzel S, Neal CL, Li S, Gammack JT, Gay AA, Goode EL, Hood L, Ostrander EA (1997) Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24–25. Am J Hum Genet 61:347–353PubMedCrossRefGoogle Scholar
  31. Nievergelt CM, Smith DW, Kohlenberg JB, Schork NJ (2004) Large-scale integration of human genetic and physical maps. Genome Res 14:1199–1205PubMedCrossRefGoogle Scholar
  32. Ostrander EA, Stanford JL (2000) Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 67:1367–1375PubMedCrossRefGoogle Scholar
  33. Ostrander EA, Markianos K, Stanford JL (2004) Finding prostate cancer susceptibility genes. Annu Rev Genomics Hum Genet 5:151–175PubMedCrossRefGoogle Scholar
  34. Pakkanen S, Baffoe-Bonnie AB, Matikainen MP, Koivisto PA, Tammela TL, Deshmukh S, Ou L, Bailey-Wilson JE, Schleutker J (2007) Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance. Hum Genet 121:257–267PubMedCrossRefGoogle Scholar
  35. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  36. Schaid DJ (2004) The complex genetic epidemiology of prostate cancer. Hum Mol Genet 13(Spec No 1):R103–R121PubMedCrossRefGoogle Scholar
  37. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62:1425–1438PubMedCrossRefGoogle Scholar
  38. Schaid DJ, Guenther JC, Christensen GB, Hebbring S, Rosenow C, Hilker CA, McDonnell SK, Cunningham JM, Slager SL, Blute ML, Thibodeau SN (2004) Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. Am J Hum Genet 75:948–965PubMedCrossRefGoogle Scholar
  39. Seppala EH, Ikonen T, Mononen N, Autio V, Rokman A, Matikainen MP, Tammela TL, Schleutker J (2003) CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 89:1966–1970PubMedCrossRefGoogle Scholar
  40. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, Nusskern DR, Damber JE, Bergh A, Emanuelsson M, Kallioniemi OP, Walker-Daniels J, Bailey-Wilson JE, Beaty TH, Meyers DA, Walsh PC, Collins FS, Trent JM, Isaacs WB (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274:1371–1374PubMedCrossRefGoogle Scholar
  41. Stanford JL, McDonnell SK, Friedrichsen DM, Carlson EE, Kolb S, Deutsch K, Janer M, Hood L, Ostrander EA, Schaid DJ (2006) Prostate cancer and genetic susceptibility: a genome scan incorporating disease aggressiveness. Prostate 66:317–325PubMedCrossRefGoogle Scholar
  42. Tapper WJ, Morton NE, Dunham I, Ke X, Collins A (2001) A sequence-based integrated map of chromosome 22. Genome Res 11:1290–1295PubMedCrossRefGoogle Scholar
  43. Valeri A, Briollais L, Azzouzi R, Fournier G, Mangin P, Berthon P, Cussenot O, Demenais F (2003) Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence. Ann Hum Genet 67:125–137PubMedCrossRefGoogle Scholar
  44. Verhage BA, Baffoe-Bonnie AB, Baglietto L, Smith DS, Bailey-Wilson JE, Beaty TH, Catalona WJ, Kiemeney LA (2001) Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 57:97–101PubMedCrossRefGoogle Scholar
  45. Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Eeles RA, Easton DF, Foulkes WD, Simard J, Giles GG, Hopper JL, Mahle L, Moller P, Bishop T, Evans C, Edwards S, Meitz J, Bullock S, Hope Q, Hsieh CL, Halpern J, Balise RN, Oakley-Girvan I, Whittemore AS, Ewing CM, Gielzak M, Isaacs SD, Walsh PC, Wiley KE, Isaacs WB, Thibodeau SN, McDonnell SK, Cunningham JM, Zarfas KE, Hebbring S, Schaid DJ, Friedrichsen DM, Deutsch K, Kolb S, Badzioch M, Jarvik GP, Janer M, Hood L, Ostrander EA, Stanford JL, Lange EM, Beebe-Dimmer JL, Mohai CE, Cooney KA, Ikonen T, Baffoe-Bonnie A, Fredriksson H, Matikainen MP, Tammela T, Bailey-Wilson J, Schleutker J, Maier C, Herkommer K, Hoegel JJ, Vogel W, Paiss T, Wiklund F, Emanuelsson M, Stenman E, Jonsson BA, Gronberg H, Camp NJ, Farnham J, Cannon-Albright LA, Seminara D (2005) A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77:219–229PubMedCrossRefGoogle Scholar
  46. Zhang Y, Kiel DP, Ellison RC, Schatzkin A, Dorgan JF, Kreger BE, Cupples LA, Felson DT (2002) Bone mass and the risk of prostate cancer: the Framingham Study. Am J Med 113:734–739PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bo Johanneson
    • 1
  • Shannon K. McDonnell
    • 2
  • Danielle M. Karyadi
    • 1
  • Scott J. Hebbring
    • 3
  • Liang Wang
    • 3
  • Kerry Deutsch
    • 4
  • Laura McIntosh
    • 5
  • Erika M. Kwon
    • 1
  • Miia Suuriniemi
    • 1
  • Janet L. Stanford
    • 5
    • 6
  • Daniel J. Schaid
    • 2
  • Elaine A. Ostrander
    • 1
  • Stephen N. Thibodeau
    • 3
  1. 1.Cancer Genetics Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of Health Sciences ResearchMayo ClinicRochesterUSA
  3. 3.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  4. 4.Institute for Systems BiologySeattleUSA
  5. 5.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  6. 6.Department of Epidemiology, School of Public Health and Community MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations