Advertisement

Human Genetics

, Volume 122, Issue 6, pp 625–634 | Cite as

A genome-wide approach to identifying novel-imprinted genes

  • Katherine S. Pollard
  • David Serre
  • Xu Wang
  • Heng Tao
  • Elin Grundberg
  • Thomas J. Hudson
  • Andrew G. Clark
  • Kelly Frazer
Original Investigation

Abstract

Genomic imprinting is an epigenetic process in which the copy of a gene inherited from one parent (maternal or paternal) is consistently silenced or expressed at a significantly lower level than the copy from the other parent. In an effort to begin a systematic genome-wide screen for imprinted genes, we assayed differential allelic expression (DAE) at 3,877 bi-allelic protein-coding sites located in 2,625 human genes in 67 unrelated individuals using genotyping microarrays. We used the presence of both over- and under-expression of the reference allele compared to the alternate allele to identify candidate-imprinted genes. We found 61 genes with at least twofold DAE plus “flipping” of the more highly expressed allele between reference and alternate across heterozygous samples. Sixteen flipping genes were genotyped and assayed for DAE in an independent data set of lymphoblastoid cell lines from two CEPH pedigrees. We confirmed that PEG10 is paternally expressed, identified one gene (ZNF331) with multiple lines of data indicating it is imprinted, and predicted several additional imprinting candidate genes. Our findings suggest that there are at most several hundred genes in the human genome that are universally imprinted. With samples of mRNA from appropriate tissues and a collection of informative cSNPs, a genome-wide search using this methodology could expand the list of genes that undergo genomic imprinting in a tissue- or temporal-specific manner.

Keywords

Imprint Gene CEPH Heterozygous Individual Pedigree Analysis Reference Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

At Perlegen Sciences we thank Erica J. Beilharz for project management assistance, Geoff B. Nilsen for designing the high-density array, and P.V. Pant for assistance with data analysis. At McGill University we thank Scott Gurd for technical assistance, Tomi M. Pastinen for supporting the osteoblast work and helpful discussions, and Olof Nilsson at Uppsala University, Sweden for collecting the bone samples for the osteoblast panel. T.J. Hudson is the recipient of a Clinician-Scientist Award in Translational Research by the Burroughs Wellcome Fund. This work was supported by an NHGRI grant to K.A. Frazer and by Genome Canada and Genome Quebec grants to T.J. Hudson. K.A. Frazer is a former employee of Perlegen Sciences, Inc.

Supplementary material

439_2007_440_MOESM1_ESM.doc (1008 kb)
Supplementary Figures (DOC 0.98 MB)
439_2007_440_MOESM2_ESM.xls (217 kb)
Supplementary Tables (XLS 217 kb)

References

  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  2. Fulmer-Smentek SB, Francke U (2001) Association of acetylated histones with paternally expressed genes in the Prader-Willi deletion region. Hum Mol Genet 10:645–652PubMedCrossRefGoogle Scholar
  3. Ge B, Gurd S, Gaudin T, Dore C, Lepage P, Harmsen E, Hudson TJ, Pastinen T (2005) Survey of allelic expression using EST mining. Genome Res 15:1584–1591PubMedCrossRefGoogle Scholar
  4. Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21:616–623PubMedCrossRefGoogle Scholar
  5. Grabowski M, Zimprich A, Lorenz-Depiereux B, Kalscheuer V, Asmus F, Gasser T, Meitinger T, Strom TM (2003) The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. Eur J Hum Genet 11:138–144PubMedCrossRefGoogle Scholar
  6. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079PubMedCrossRefGoogle Scholar
  7. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, Satomura K, Hermann R, Bonthron DT, Hayashizaki Y (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460PubMedCrossRefGoogle Scholar
  8. Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP (2003) Genetic variation in gene expression is common in the human genome. Genome Res 13:1855–1862PubMedCrossRefGoogle Scholar
  9. Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884PubMedCrossRefGoogle Scholar
  10. Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 103:6623–6628PubMedCrossRefGoogle Scholar
  11. Morison IM, Ramsay JP, Spencer HG (2005) Evolution of mammalian imprinting. Trends Genet 21:457–465PubMedCrossRefGoogle Scholar
  12. Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. BioEssays 25:577–588PubMedCrossRefGoogle Scholar
  13. Nikaido I, Saito C, Mizuno Y, Meguro M, Bono H, Kadomura M, Kono T, Morris GA, Lyons PA, Oshimura M, RIKEN GER Group, GSL Members, Hayashizaki Y, Okazaki Y (2003) Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res 13:1402–1409PubMedCrossRefGoogle Scholar
  14. Pant PV, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA (2006) Analysis of allelic differential expression in human white blood cells. Genome Res 16:331–339PubMedCrossRefGoogle Scholar
  15. Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, Lavergne K, Villeneuve A, Gaudin T, Brandstrom H, Beck A, Verner A, Kingsley J, Harmsen E, Labuda D, Morgan K, Vohl MC, Naumova AK, Sinnett D, Hudson TJ (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 16:184–193PubMedGoogle Scholar
  16. Pastinen T, Ge B, Gurd S, Gaudin T, Dore C, Lemire M, Lepage P, Harmsen E, Hudson TJ (2005) Mapping common regulatory variants to human haplotypes. Hum Mol Genet 14:3963–3971PubMedCrossRefGoogle Scholar
  17. Reik W, Walter J (2001) Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet 27:255–256PubMedCrossRefGoogle Scholar
  18. Ruf N, Dunzinger U, Brinckmann A, Haaf T, Nurnberg P, Zechner U (2006) Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes. Genomics 87:509–519PubMedCrossRefGoogle Scholar
  19. Ruf N, Bahring S, Galetska D, Pliushch G, Luft F, Nurnberg P, Haaf T, Kelsey G, Zechner U (2007) Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum Mol Genet 16:2591–2599PubMedCrossRefGoogle Scholar
  20. Schweizer J, Zynger D, Francke U (1999) In vivo nuclease hypersensitivity studies reveal multiple sites of parental origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. Hum Mol Genet 8:555–566PubMedCrossRefGoogle Scholar
  21. Spencer HG, Feldman MW, Clark AG (1998) Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics 148:893–904PubMedGoogle Scholar
  22. Spielman RS, Bastone LA, BurdickJT, Morely M, Ewens WJ, Cheung VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231PubMedCrossRefGoogle Scholar
  23. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM (2007) Gene-expression variation within and among human populations. Am J Hum Genet 80:502–509PubMedCrossRefGoogle Scholar
  24. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavaré S, Deloukas P, Dermitzakis ET (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1:e78PubMedCrossRefGoogle Scholar
  25. Tao H, Cox DR, Frazer KA (2006) Allele-specific KRT1 expression is a complex trait. PLoS Genet 2:e93PubMedCrossRefGoogle Scholar
  26. Valleley EM, Cordery SF, Bonthron DT (2007) Tissue-specific imprinting of the ZAC/PLAGL1 tumour suppressor gene results from variable utilization of monoallelic and biallelic promoters. Hum Mol Genet 16:972–981PubMedCrossRefGoogle Scholar
  27. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation in human gene expression. Science 297:1143PubMedCrossRefGoogle Scholar
  28. Zhou H, Brockington M, Jungbluth H, Monk D, Stanier P, Sewry CA, Moore GE, Muntoni F (2006) Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet 79:859–868PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Katherine S. Pollard
    • 1
  • David Serre
    • 2
  • Xu Wang
    • 3
  • Heng Tao
    • 5
  • Elin Grundberg
    • 2
  • Thomas J. Hudson
    • 2
    • 4
  • Andrew G. Clark
    • 3
  • Kelly Frazer
    • 5
    • 6
  1. 1.UC Davis Genome Center and Department of StatisticsUniversity of CaliforniaDavisUSA
  2. 2.McGill University and Genome Quebec Innovation CentreMontrealCanada
  3. 3.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA
  4. 4.Ontario Institute for Cancer ResearchTorontoCanada
  5. 5.Perlegen SciencesMountain ViewUSA
  6. 6.Scripps Genomic MedicineLa JollaUSA

Personalised recommendations