Human Genetics

, Volume 122, Issue 1, pp 63–70

Male-to-female sex reversal associated with an ∼250 kb deletion upstream of NR0B1 (DAX1)

  • Marta Smyk
  • Jonathan S. Berg
  • Amber Pursley
  • Fiona K. Curtis
  • Bridget A. Fernandez
  • Gabriel A. Bien-Willner
  • James R. Lupski
  • Sau Wai Cheung
  • Pawel Stankiewicz
Original Investigation

Abstract

Deletion of the dosage sensitive gene NR0B1 encoding DAX1 on chromosome Xp21.2 results in congenital adrenal hypoplasia (AHC), whereas NR0B1 duplication in 46,XY individuals leads to gonadal dysgenesis and a female phenotype. We describe a 21-year-old 46,XY female manifesting primary amenorrhea, a small immature uterus, gonadal dysgenesis, and notably absent adrenal insufficiency with a submicroscopic (257 kb) deletion upstream of NR0B1. We hypothesize that loss of regulatory sequences may have resulted in position effect up-regulation of DAX1 expression, consistent with phenotypic consequences of NR0B1 duplication. We propose that this genomic region and by extension those surrounding the dosage sensitive SRY, SOX9, SF1, and WNT-4 genes, should be examined for copy-number variation in patients with sex reversal.

References

  1. Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL (1999) A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126PubMedCrossRefGoogle Scholar
  2. Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, Ferrante E, Chiumello G, McCabe ER, Fraccaro M et al (1994) A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7:497–501PubMedCrossRefGoogle Scholar
  3. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450PubMedCrossRefGoogle Scholar
  4. Camerino G, Parma P, Radi O, Valentini S (2006) Sex determination and sex reversal. Curr Opin Genet Dev 16:289–292PubMedCrossRefGoogle Scholar
  5. Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A, Yatsenko SA, Cooper ML, Furman P, Stankiewicz P, Lupski JR, Chinault AC, Beaudet AL (2005) Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 7:422–432PubMedCrossRefGoogle Scholar
  6. Clipsham R, McCabe ERB (2003) DAX1 and its network partners: exploring complexity in development. Mol Genet Metab 80:81–120PubMedCrossRefGoogle Scholar
  7. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311PubMedCrossRefGoogle Scholar
  8. Dorn C, Ou Q, Svaren J, Crawford PA, Sadovsky Y (1999) Activation of luteinizing hormone beta gene by gonadotropin-releasing hormone requires the synergy of early growth response-1 and steroidogenic factor-1. J Biol Chem 274:13870–13876PubMedCrossRefGoogle Scholar
  9. Hehir-Kwa JY, Egmont-Peterson M, Janssen IM, Smeeta D, Van Kessel AG, Veltman JA (2007) Genome-wide copy number profiling on high-density BAC, SNP and oligonucleotide microarrays: a platform comparison based on statistical power analysis. DNA Res (in press)Google Scholar
  10. Hoyle C, Narvaez V, Alldus G, Lovell-Badge R, Swain A (2002) Dax1 expression is dependent on steroidogenic factor 1 in the developing gonad. Mol Endocrinol 16:747–756PubMedCrossRefGoogle Scholar
  11. Huang B, Wang S, Ning Y, Lamb AN, Bartley J (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87:349–353PubMedCrossRefGoogle Scholar
  12. Johnston JJ, Walker RL, Davis S, Facio F, Turner JT, Bick DP, Daentl DL, Ellison JW, Meltzer PS, Biesecker LG. (2007) Zoom-in comparative genomic hybridisation arrays for the characterisation of variable breakpoint contiguous gene syndromes. J Med Genet 44:e59PubMedCrossRefGoogle Scholar
  13. Jordan BK, Mohammed M, Ching ST, Délot E, Chen XN, Dewing P, Swain A, Rao PN, Elejalde BR, Vilain E (2001) Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 68:1102–1109PubMedCrossRefGoogle Scholar
  14. Kim J, Prawitt D, Bardeesy N, Torban E, Vicaner C, Goodyer P, Zabel B, Pelletier J (1999) The Wilms’ tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. Mol Cell Biol 19:2289–2299PubMedGoogle Scholar
  15. Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76:8–32PubMedCrossRefGoogle Scholar
  16. Kolbe D, Taylor J, Elnitski L, Eswara P, Li J, Miller W, Hardison R, Chiaromonte F (2004) Regulatory potential scores from genome-wide three-way alignments of human, mouse, and rat. Genome Res 14:700–707PubMedCrossRefGoogle Scholar
  17. Lee JA, Madrid RE, Sperle K, Ritterson CM, Hobson GM, Garbern J, Lupski JR, Inoue K (2006) Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol 59:398–403PubMedCrossRefGoogle Scholar
  18. Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault C, Beaudet AL, Lupski JR, Cheung SW, Ward PA (2007) Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS ONE 2:e327PubMedCrossRefGoogle Scholar
  19. Ludbrook LM, Harley VR (2004) Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121PubMedCrossRefGoogle Scholar
  20. Lupski JR, Stankiewicz P (eds) (2006) Genomic disorders. The genomic basis of disease. Humana Press, TotowaGoogle Scholar
  21. Mansour S, Hall CM, Pembrey ME, Young ID (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32:415–420PubMedCrossRefGoogle Scholar
  22. McCabe ER (2007) DAX1: increasing complexity in the roles of this novel nuclear receptor. Mol Cell Endocrinol 265–266:179–182PubMedCrossRefGoogle Scholar
  23. Meeks JJ, Weiss J, Jameson JL (2003) Dax1 is required for testis determination. Nat Genet 34:32–33PubMedCrossRefGoogle Scholar
  24. Muscatelli F, Strom TM, Walker AP, Zanaria E, Récan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, Schwarz HP, Kaplan J-C, Camerino G, Meitinger T, Monaco AP (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372:672–676PubMedCrossRefGoogle Scholar
  25. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA (1998) Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93:445–454PubMedCrossRefGoogle Scholar
  26. Niakan KK, McCabe ERB (2005) DAX1 origin, function, and novel role. Mol Genet Metab 86:70–83PubMedCrossRefGoogle Scholar
  27. Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J, Hammer GD, Jameson JL (2005) Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 132:2415–2423PubMedCrossRefGoogle Scholar
  28. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309PubMedCrossRefGoogle Scholar
  29. Pop R, Conz C, Lindenberg KS, Blesson S, Schmalenberger B, Briault S, Pfeifer D, Scherer G (2004) Screening of the 1 Mb SOX9 5’ control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet 41:e47PubMedCrossRefGoogle Scholar
  30. Sanlaville D, Vialard F, Thépot F, Vue-Droy L, Ardalan A, Nizard P, Corré A, Devauchelle B, Martin-Denavit T, Nouchy M, Malan V, Taillemite JL, Portnoї MF (2004) Functional disomy of Xp including duplication of DAX1 gene with sex reversal due to t(X;Y)(p21.2;p11.3). Am J Med Genet A 128:325–330PubMedCrossRefGoogle Scholar
  31. Schlaubitz S, Yatsenko SA, Smith LD, Keller KL, Vissers LE, Scott DA, Cai WW, Reardon W, Abdul-Rahman OA, Lammer EJ, Lifchez CA, Magenis E, Veltman JA, Stankiewicz P, Zabel BU, Lee B (2007) Ovotestes and XY sex reversal in a female with an interstitial 9q33.3-q34.1 deletion encompassing NR5A1 and LMX1B causing features of genitopatellar syndrome. Am J Med Genet A 143:1071–1081PubMedGoogle Scholar
  32. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith M, Foster JW, Frischauf A-M, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244PubMedCrossRefGoogle Scholar
  33. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G (1996) Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12:404–409PubMedCrossRefGoogle Scholar
  34. Tajima K, Dantes A, Yao Z, Sorokina K, Kotsuji F, Seger R, Amsterdam A (2003) Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1. J Clin Endocrinol Metab 88:2288–2299PubMedCrossRefGoogle Scholar
  35. Tremblay JJ, Viger RS (2001) Nuclear Receptor Dax-1 Represses the Transcriptional Cooperation Between GATA-4 and SF-1 in Sertoli Cells. Biol Reprod 64:1191–1199PubMedCrossRefGoogle Scholar
  36. Velagaleti GVN, Bien-Willner GA, Northrup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P (2005) Position effects due to chromosome breakpoints that map ∼900 Kb upstream and ∼1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 76:652–662PubMedCrossRefGoogle Scholar
  37. Vilain E, McCabe ER (1998) Mammalian sex determination: from gonads to brain. Mol Genet Metab 65:74–84PubMedCrossRefGoogle Scholar
  38. Ylstra B, van den Ijssel P, Carvalho B, Brakenhoff RH, Meijer GA (2006) BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res 34:445–450PubMedCrossRefGoogle Scholar
  39. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ERB, Meitinger T, Monaco AP, Sassone-Corsi P, Camerino G (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372:635–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marta Smyk
    • 1
    • 2
  • Jonathan S. Berg
    • 1
  • Amber Pursley
    • 1
  • Fiona K. Curtis
    • 3
  • Bridget A. Fernandez
    • 3
  • Gabriel A. Bien-Willner
    • 1
  • James R. Lupski
    • 1
    • 4
    • 5
  • Sau Wai Cheung
    • 1
  • Pawel Stankiewicz
    • 1
    • 2
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Department of Medical GeneticsInstitute of Mother and ChildWarsawPoland
  3. 3.Disciplines of Medicine and GeneticsMemorial University of NewfoundlandSt. John’sCanada
  4. 4.Department of PediatricsBaylor College of MedicineHoustonUSA
  5. 5.Texas Children’s HospitalHoustonUSA

Personalised recommendations