Human Genetics

, Volume 122, Issue 1, pp 23–32

Large genomic fibrillin-1 (FBN1) gene deletions provide evidence for true haploinsufficiency in Marfan syndrome

  • Gábor Mátyás
  • Sira Alonso
  • Andrea Patrignani
  • Myriam Marti
  • Eliane Arnold
  • István Magyar
  • Caroline Henggeler
  • Thierry Carrel
  • Beat Steinmann
  • Wolfgang Berger
Original Investigation

Abstract

Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for ∼500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.

References

  1. Adès LC, Sullivan K, Biggin A, Haan EA, Brett M, Holman KJ, Dixon J, Robertson S, Holmes AD, Rogers J, Bennetts B (2006) FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet A 140:1047–1058PubMedGoogle Scholar
  2. Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F, Dietz HC (1999) Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics 56:70–77PubMedCrossRefGoogle Scholar
  3. Caputi M, Kendzior RJ Jr, Beemon KL (2002) A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer. Genes Dev 16:1754–1759PubMedCrossRefGoogle Scholar
  4. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM (2007) Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol 176:355–67PubMedCrossRefGoogle Scholar
  5. Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY (1993) Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 17:476–484PubMedCrossRefGoogle Scholar
  6. De Paepe A, Devereux RB, Dietz HC, Hennekam RCM, Pyeritz RE (1996) Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 62:417–426PubMedCrossRefGoogle Scholar
  7. Dierlamm J, Schilling G, Michaux L, Hinz K, Penas EM, Seeger D, Hagemeijer A, Hossfeld DK (2003) Deletion of chromosome 15 represents a rare but recurrent chromosomal abnormality in myelocytic malignancies. Cancer Genet Cytogenet 144:1–5PubMedCrossRefGoogle Scholar
  8. Dietz HC, Mecham RP (2000) Mouse models of genetic diseases resulting from mutations in elastic fiber proteins. Matrix Biol 19:481–488PubMedCrossRefGoogle Scholar
  9. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339PubMedCrossRefGoogle Scholar
  10. Dietz HC, McIntosh I, Sakai LY, Corson GM, Chalberg SC, Pyeritz RE, Francomano CA (1993) Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17:468–475PubMedCrossRefGoogle Scholar
  11. Fukushima Y, Wakui K, Nishida T, Nishimoto H (1990) Craniosynostosis in an infant with an interstitial deletion of 15q [46,XY,del(15)(q15q22.1)]. Am J Med Genet 36:209–213PubMedCrossRefGoogle Scholar
  12. Giacalone JP, Francke U (1992) Common sequence motifs at the rearrangement sites of a constitutional X/autosome translocation and associated deletion. Am J Hum Genet 50:725–741PubMedGoogle Scholar
  13. Halliday D, Hutchinson S, Kettle S, Firth H, Wordsworth P, Handford PA (1999) Molecular analysis of eight mutations in FBN1. Hum Genet 105:587–597PubMedCrossRefGoogle Scholar
  14. Hewett D, Lynch J, Child A, Firth H, Sykes B (1994) Differential allelic expression of a fibrillin gene (FBN1) in patients with Marfan syndrome. Am J Hum Genet 55:447–452PubMedGoogle Scholar
  15. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18:1585–1592PubMedCrossRefGoogle Scholar
  16. Hutchinson S, Furger A, Halliday D, Judge DP, Jefferson A, Dietz HC, Firth H, Handford PA (2003) Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: a potential modifier of phenotype? Hum Mol Genet 12:2269–2276PubMedCrossRefGoogle Scholar
  17. Judge DP, Dietz HC (2005) Marfan’s syndrome. Lancet 366:1965–1976PubMedCrossRefGoogle Scholar
  18. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181PubMedCrossRefGoogle Scholar
  19. Kainulainen K, Sakai LY, Child A, Pope FM, Puhakka L, Ryhanen L, Palotie A, Kaitila I, Peltonen L (1992) Two mutations in Marfan syndrome resulting in truncated fibrillin polypeptides. Proc Natl Acad Sci USA 89:5917–5921PubMedCrossRefGoogle Scholar
  20. Liu W, Schrijver I, Brenn T, Furthmayr H, Francke U (2001) Multi-exon deletions of the FBN1 gene in Marfan syndrome. BMC Med Genet 2:11PubMedCrossRefGoogle Scholar
  21. Loeys B, De Backer J, Van Acker P, Wettinck K, Pals G, Nuytinck L, Coucke P, De Paepe A (2004) Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat 24:140–146PubMedCrossRefGoogle Scholar
  22. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281PubMedCrossRefGoogle Scholar
  23. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798PubMedCrossRefGoogle Scholar
  24. Mátyás G, De Paepe A, Halliday D, Boileau C, Pals G, Steinmann B (2002a) Evaluation and application of denaturing HPLC for mutation detection in Marfan syndrome: identification of 20 novel mutations and two novel polymorphisms in the FBN1 gene. Hum Mutat 19:443–456PubMedCrossRefGoogle Scholar
  25. Mátyás G, Giunta C, Steinmann B, Hossle JP, Hellwig R (2002b) Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum Mutat 19:58–68PubMedCrossRefGoogle Scholar
  26. Mátyás G, Arnold E, Carrel T, Baumgartner D, Boileau C, Berger W, Steinmann B (2006) Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum Mutat 27:760–769PubMedCrossRefGoogle Scholar
  27. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C, Matsumoto N (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860PubMedCrossRefGoogle Scholar
  28. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–11PubMedCrossRefGoogle Scholar
  29. Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, Pereira L, Ramirez F, Pyeritz RE, Dietz HC (1995) Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet 57:8–21PubMedGoogle Scholar
  30. Otto E, Betz R, Rensing C, Schatzle S, Kuntzen T, Vetsi T, Imm A, Hildebrandt F (2000) A deletion distinct from the classical homologous recombination of juvenile nephronophthisis type 1 (NPH1) allows exact molecular definition of deletion breakpoints. Hum Mutat 16:211–223PubMedCrossRefGoogle Scholar
  31. Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, Giampietro PF, Zaleski C, Estrera AL, Safi HJ, Shete S, Willing MC, Raman CS, Milewicz DM (2005) Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112:513–520PubMedCrossRefGoogle Scholar
  32. Pepe G, Giusti B, Evangelisti L, Porciani MC, Brunelli T, Giurlani L, Attanasio M, Fattori R, Bagni C, Comeglio P, Abbate R, Gensini GF (2001) Fibrillin-1 (FBN1) gene frameshift mutations in Marfan patients: genotype-phenotype correlation. Clin Genet 59:444–450PubMedCrossRefGoogle Scholar
  33. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823PubMedCrossRefGoogle Scholar
  34. Pramparo T, Mattina T, Gimelli S, Liehr T, Zuffardi O (2005) Narrowing the deleted region associated with the 15q21 syndrome. Eur J Med Genet 48:346–352PubMedCrossRefGoogle Scholar
  35. Qiu P, Soder GJ, Sanfiorenzo VJ, Wang L, Greene JR, Fritz MA, Cai XY (2003) Quantification of single nucleotide polymorphisms by automated DNA sequencing. Biochem Biophys Res Commun 309:331–338PubMedCrossRefGoogle Scholar
  36. Rabbee N, Speed TP (2006) A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22:7–12PubMedCrossRefGoogle Scholar
  37. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Beroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787PubMedCrossRefGoogle Scholar
  38. Rommel K, Karck M, Haverich A, von Kodolitsch Y, Rybczynski M, Muller G, Singh KK, Schmidtke J, Arslan-Kirchner M (2005) Identification of 29 novel and nine recurrent fibrillin-1 (FBN1) mutations and genotype-phenotype correlations in 76 patients with Marfan syndrome. Hum Mutat 26:529–539PubMedCrossRefGoogle Scholar
  39. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57PubMedCrossRefGoogle Scholar
  40. Schrijver I, Liu W, Odom R, Brenn T, Oefner P, Furthmayr H, Francke U (2002) Premature termination mutations in FBN1: Distinct effects on differential allelic expression and on protein and clinical phenotypes. Am J Hum Genet 71:223–237PubMedCrossRefGoogle Scholar
  41. Shur N, Cowan J, Wheeler PG (2003) Craniosynostosis and congenital heart anomalies associated with a maternal deletion of 15q15-22.1. Am J Med Genet A 120:542–546PubMedCrossRefGoogle Scholar
  42. Singh KK, Elligsen D, Liersch R, Schubert S, Pabst B, Arslan-Kirchner M, Schmidtke J (2007) Multi-exon out of frame deletion of the FBN1 gene leading to a severe juvenile onset cardiovascular phenotype in Marfan syndrome. J Mol Cell Cardiol 42:352–356PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gábor Mátyás
    • 1
  • Sira Alonso
    • 1
  • Andrea Patrignani
    • 2
  • Myriam Marti
    • 2
  • Eliane Arnold
    • 3
  • István Magyar
    • 1
  • Caroline Henggeler
    • 1
  • Thierry Carrel
    • 4
  • Beat Steinmann
    • 3
  • Wolfgang Berger
    • 1
  1. 1.Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical GeneticsUniversity of ZurichSchwerzenbach, ZurichSwitzerland
  2. 2.Functional Genomics Center ZurichETH and University of ZurichZurichSwitzerland
  3. 3.Division of Metabolism and Molecular PediatricsUniversity Children’s HospitalZurichSwitzerland
  4. 4.Clinic for Cardiovascular SurgeryUniversity HospitalBerneSwitzerland

Personalised recommendations