Human Genetics

, Volume 121, Issue 3–4, pp 377–387

Systematic screening of lysyl oxidase-like (LOXL) family genes demonstrates that LOXL2 is a susceptibility gene to intracranial aneurysms

  • Hiroyuki Akagawa
  • Akira Narita
  • Haruhiko Yamada
  • Atsushi Tajima
  • Boris Krischek
  • Hidetoshi Kasuya
  • Tomokatsu Hori
  • Motoo Kubota
  • Naokatsu Saeki
  • Akira Hata
  • Tohru Mizutani
  • Ituro Inoue
Original Investigation

Abstract

Four lysyl oxidase family genes (LOXL1, LOXL2, LOXL3, and LOXL4), which catalyze cross-linking of collagen and elastin, were considered to be functional candidates for intracranial aneurysms (IA) and were extensively screened for genetic susceptibility in Japanese IA patients. Total RNA was isolated from four paired ruptured IA and superficial temporal artery (STA) tissue and examined by real-time RT-PCR. The expression of LOXL2 in the paired IA and STA tissues was elevated in the IA tissue. A total of 55 single nucleotide polymorphisms (SNPs) of LOXL1-4 were genotyped for an allelic association study in 402 Japanese IA patients and 462 Japanese non-IA controls. Allelic associations were evaluated with the chi-square test and the permutation test especially designed for adjustment of multiple testing. SNPs of LOXL1 and LOXL4 were not significantly associated with IA, while several SNPs of LOXL2 and LOXL3 showed nominally significant associations in IA patients. We detected an empirically significant association with one SNP of LOXL2 in familial IA patients after adjustment for multiple testing [χ2 = 10.23, empirical P = 0.023, OR (95% CI) = 1.49 (1.17, 1.90)]. Furthermore, multilocus interaction was evaluated by multifactor dimensionality reduction analysis. We found that the SNPs of LOXL2 have an interactive effect with elastin (ELN) and LIM kinase 1 (LIMK1) that have been previously found to be associated with IA. In conclusion, one SNP of LOXL2 showed a significant association with IA individually, and we also detected a gene–gene interaction of LOXL2 with ELN/LIMK1, which may play an important role in susceptibility to IA.

Supplementary material

439_2007_333_MOESM1_ESM.doc (393 kb)
Supplementary Table 1 Primer sequences for real-time RT-PCR (doc 393 kb)

References

  1. Akagawa H, Tajima A, Sakamoto Y, Krischek B, Yoneyama T, Kasuya H, Onda H, Hori T, Kubota M, Machida T, Saeki N, Hata A, Hashiguchi K, Kimura E, Kim CJ, Yang TK, Lee JY, Kimm K, Inoue I (2006) A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet 15:1722–1734PubMedCrossRefGoogle Scholar
  2. Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, Kessler O, Cohen T, Resnick M, Neeman M, Neufeld G (2003) Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 63:1657–1666PubMedGoogle Scholar
  3. Ambrosius WT, Lange EM, Langefeld CD (2004) Power for genetic association studies with random allele frequencies and genotype distributions. Am J Hum Genet 74:683–693PubMedCrossRefGoogle Scholar
  4. Asuncion L, Fogelgren B, Fong KS, Fong SF, Kim Y, Csiszar K (2001) A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matrix Biol 20:487–491PubMedCrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J RStat Soc B 57:289–300Google Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  7. Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32PubMedGoogle Scholar
  8. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927PubMedGoogle Scholar
  9. Farnham JM, Camp NJ, Neuhausen SL, Tsuruda J, Parker D, MacDonald J, Cannon-Albright LA (2004) Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet 114:250–255PubMedCrossRefGoogle Scholar
  10. Heidema AG, Boer JM, Nagelkerke N, Mariman EC, van der A DL, Feskens EJ (2006) The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases. BMC Genet 7:23Google Scholar
  11. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefGoogle Scholar
  12. Hofer A, Ozkan S, Hermans M, Kubassek N, Sitzer M, Burtscher J, Knopp U, Schoch B, Wanke I, Huebner F, Raabe A, Steinmetz H, Auburger G (2004) Mutations in the lysyl oxidase gene not associated with intracranial aneurysm in Central European families. Cerebrovasc Dis 18:189–193PubMedCrossRefGoogle Scholar
  13. Inagawa T, Tokuda Y, Ohbayashi N, Takaya M, Moritake K (1995) Study of aneurysmal subarachnoid hemorrhage in Izumo City, Japan. Stroke 26:761–766PubMedGoogle Scholar
  14. Jourdan-Le Saux C, Le Saux O, Donlon T, Boyd CD, Csiszar K (1998) The human lysyl oxidase-related gene (LOXL2) maps between markers D8S280 and D8S278 on chromosome 8p21.2-p21.3. Genomics 51:305–307PubMedCrossRefGoogle Scholar
  15. Jourdan-Le Saux C, Tomsche A, Ujfalusi A, Jia L, Csiszar K (2001) Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein. Genomics 74:211–218PubMedCrossRefGoogle Scholar
  16. Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672PubMedCrossRefGoogle Scholar
  17. Kenyon K, Modi WS, Contene S, Friedman RM (1993) A novel human cDNA with a predicted protein similar to lysyl oxidase maps to chromosome 15q24-q25. J Biol Chem 268:18435–18437PubMedGoogle Scholar
  18. Krischek B, Inoue I (2006) The genetics of intracranial aneurysms. J Hum Genet 51:587–594PubMedCrossRefGoogle Scholar
  19. Krischek B, Narita A, Tajima A, Akagawa H, Kasuya H, Hori T, Yoneyama T, Inoue I (2006) Is there any evidence for linkage on chromosome 17cen in affected Japanese sib-pairs with an intracranial aneurysm? J Hum Genet 51:491–494PubMedCrossRefGoogle Scholar
  20. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67PubMedGoogle Scholar
  21. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182PubMedCrossRefGoogle Scholar
  22. Longstreth WT Jr, Nelson LM, Koepsell TD, van Belle G (1993) Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology 43:712–718PubMedGoogle Scholar
  23. Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI, Soininen R (2002) Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106:2503–2509PubMedCrossRefGoogle Scholar
  24. Molnar J, Fong KS, He QP, Hayashi K, Kim Y, Fong SF, Fogelgren B, Szauter KM, Mink M, Csiszar K (2003) Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta 1647:220–224PubMedGoogle Scholar
  25. Nahed BV, Seker A, Guclu B, Ozturk AK, Finberg K, Hawkins AA, DiLuna ML, State M, Lifton RP, Gunel M (2005) Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet 76:172–179PubMedCrossRefGoogle Scholar
  26. Olson JM, Vongpunsawad S, Kuivaniemi H, Ronkainen A, Hernesniemi J, Ryynanen M, Kim LL, Tromp G (2002) Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Med Genet 3:7PubMedCrossRefGoogle Scholar
  27. Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T, Takeda J, Nakajima T, Inoue I (2001) Genome-wide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet 69:804–819PubMedCrossRefGoogle Scholar
  28. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24:3446–3458PubMedCrossRefGoogle Scholar
  29. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCrossRefGoogle Scholar
  30. Roos YB, Pals G, Struycken PM, Rinkel GJ, Limburg M, Pronk JC, van den Berg JS, Luijten JA, Pearson PL, Vermeulen M, Westerveld A (2004) Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke 35:2276–2281PubMedCrossRefGoogle Scholar
  31. Ruigrok YM, Seitz U, Wolterink S, Rinkel GJ, Wijmenga C, Urban Z (2004) Association of polymorphisms and haplotypes in the elastin gene in Dutch patients with sporadic aneurysmal subarachnoid hemorrhage. Stroke 35:2064–2068PubMedCrossRefGoogle Scholar
  32. Saito H, Papaconstantinou J, Sato H, Goldstein S (1997) Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J Biol Chem 272:8157–8160PubMedCrossRefGoogle Scholar
  33. Schievink WI, Wijdicks EF, Parisi JE, Piepgras DG, Whisnant JP (1995) Sudden death from aneurysmal subarachnoid hemorrhage. Neurology 45:871–874PubMedGoogle Scholar
  34. Slowik A, Borratynska A, Pera J, Betlej M, Dziedzic T, Krzyszkowski T, Czepko R, Figlewicz DA, Szczudlik A (2004) II genotype of the angiotensin-converting enzyme gene increases the risk for subarachnoid hemorrhage from ruptured aneurysm. Stroke 35:1594–1597PubMedCrossRefGoogle Scholar
  35. Takenaka K, Sakai H, Yamakawa H, Yoshimura S, Kumagai M, Yamakawa H, Nakashima S, Nozawa Y, Sakai N (1999) Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg 90:935–938PubMedCrossRefGoogle Scholar
  36. Vadas Z, Kessler O, Akiri G, Gengrinovitch S, Kagan HM, Baruch Y, Izhak OB, Neufeld G (2005) Abnormal deposition of collagen around hepatocytes in Wilson’s disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase-like protein-2. J Hepatol 43:499–507CrossRefGoogle Scholar
  37. van der Voet M, Olson JM, Kuivaniemi H, Dudek DM, Skunca M, Ronkainen A, Niemela M, Jaaskelainen J, Hernesniemi J, Helin K, Leinonen E, Biswas M, Tromp G (2004) Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. Am J Hum Genet 74:564–571PubMedCrossRefGoogle Scholar
  38. Yamada S, Utsunomiya M, Inoue K, Nozaki K, Miyamoto S, Hashimoto N, Takenaka K, Yoshinaga T, Koizumi A (2003) Absence of linkage of familial intracranial aneurysms to 7q11 in highly aggregated Japanese families. Stroke 34:892–900PubMedCrossRefGoogle Scholar
  39. Yamada S, Utsunomiya M, Inoue K, Nozaki K, Inoue S, Takenaka K, Hashimoto N, Koizumi A (2004) Genome-wide scan for Japanese familial intracranial aneurysms: linkage to several chromosomal regions. Circulation 110:3727–3733PubMedCrossRefGoogle Scholar
  40. Yoneyama T, Kasuya H, Onda H, Akagawa H, Jinnai N, Nakajima T, Hori T, Inoue I (2003) Association of positional and functional candidate genes FGF1, FBN2, and LOX on 5q31 with intracranial aneurysm. J Hum Genet 48:309–314PubMedGoogle Scholar
  41. Yoneyama T, Kasuya H, Onda H, Akagawa H, Hashiguchi K, Nakajima T, Hori T, Inoue I (2004) Collagen type I alpha2 (COL1a2) is the susceptible gene for intracranial aneurysms. Stroke 35:443–448PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hiroyuki Akagawa
    • 1
    • 2
  • Akira Narita
    • 1
    • 3
  • Haruhiko Yamada
    • 1
  • Atsushi Tajima
    • 1
    • 3
  • Boris Krischek
    • 1
    • 2
    • 3
  • Hidetoshi Kasuya
    • 2
  • Tomokatsu Hori
    • 2
  • Motoo Kubota
    • 4
  • Naokatsu Saeki
    • 4
  • Akira Hata
    • 5
  • Tohru Mizutani
    • 6
  • Ituro Inoue
    • 1
    • 3
    • 7
  1. 1.Division of Genetic Diagnosis, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  2. 2.Department of Neurosurgery, Neurological InstituteTokyo Women’s Medical UniversityTokyoJapan
  3. 3.Division of Molecular Life Science, School of MedicineTokai UniversityBohseidai, Isehara, KanagawaJapan
  4. 4.Department of Neurosurgery, School of MedicineChiba UniversityChibaJapan
  5. 5.Department of Public Health, School of MedicineChiba UniversityChibaJapan
  6. 6.Tokyo Metropolitan Fuchu HospitalFuchuJapan
  7. 7.Core Research for Evolutional Science and TechnologyJapan Science and Technology CorporationKawaguchiJapan

Personalised recommendations