Human Genetics

, Volume 121, Issue 2, pp 257–267

Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance

  • Sanna Pakkanen
  • Agnes B. Baffoe-Bonnie
  • Mika P. Matikainen
  • Pasi A. Koivisto
  • Teuvo L. J. Tammela
  • Snehal Deshmukh
  • Liang Ou
  • Joan E. Bailey-Wilson
  • Johanna Schleutker
Original Investigation

Abstract

Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide and is likely to be caused by a number of genes with different modes of inheritance, population frequencies and penetrance. The objective of this study was to assess the familial aggregation of PCa in a sample of 1,546 nuclear families ascertained through an affected father and diagnosed during 1988–1993, from the unique, founder population-based resource of the Finnish Cancer Registry. Segregation analysis was performed for two cohorts of 557 early-onset and 989 late-onset families evaluating residual paternal effects and assuming that age at diagnosis followed a logistic distribution after log-transformation. The results did not support an autosomal dominant inheritance as has been reported in many of the hospital-based prostatectomy series. Instead, it confirmed the existence of hereditary PCa in the Finnish population under a complex model that included a major susceptibility locus with Mendelian recessive inheritance and a significant paternal regressive coefficient that is indicative of a polygenic/multifactorial component. The strengths of our study are the homogenous Finnish population, large epidemiological population-based data, histologically confirmed cancer diagnosis done before the PSA-era in Finland and registry based approach. Our results support the evidence that the inheritance of PCa is controlled by major genes and are in line with the previous linkage studies. Moreover, this is the first time a recessive inheritance is suggested to fit PCa in all data even when divided to early and late-onset cohorts.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans 19:716–723Google Scholar
  2. Baffoe-Bonnie AB, Kiemeney LA, Beaty TH, Bailey-Wilson JE, Schnell AH, Sigvaldsson H, Olafsdottir G, Tryggvadottir L, Tulinius H (2002) Segregation analysis of 389 Icelandic pedigrees with breast and prostate cancer. Genet Epidemiol 23:349–363PubMedCrossRefGoogle Scholar
  3. Baffoe-Bonnie AB, Smith JR, Stephan DA, Schleutker J, Carpten JD, Kainu T, Gillanders EM, Matikainen M, Teslovich TM, Tammela T, Sood R, Balshem AM, Scarborough SD, Xu J, Isaacs WB, Trent JM, Kallioniemi OP, Bailey-Wilson E (2005). A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Hum Genet 117(4):307–316PubMedCrossRefGoogle Scholar
  4. Bonney GE (1986) Regressive logistic models for familial disease and other binary traits. Biometrics 42:611–625PubMedCrossRefGoogle Scholar
  5. Cannings C, Thompson EA (1977) Ascertainment in the sequential sampling of pedigrees. Clin Genet 12:208–212PubMedCrossRefGoogle Scholar
  6. Cannings C, Thompson E, Skolnick M (1978) Probability functions on complex pedigrees. Adv Appl Probl 10:26–26–61CrossRefGoogle Scholar
  7. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M et al (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184PubMedCrossRefGoogle Scholar
  8. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89:3367–3371PubMedCrossRefGoogle Scholar
  9. Conlon EM, Goode EL, Gibbs M, Stanford JL, Badzioch M, Janer M, Kolb S, Hood L, Ostrander EA, Jarvik GP, Wijsman EM (2003) Oligogenic segregation analysis of hereditary prostate cancer pedigrees: Evidence for multiple loci affecting age at onset. Int J Cancer 105:630–635PubMedCrossRefGoogle Scholar
  10. Cui J, Staples MP, Hopper JL, English DR, McCredie MR, Giles GG (2001) Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 68:1207–1218PubMedCrossRefGoogle Scholar
  11. De la Chapelle A (1993) Disease gene mapping in isolated human populations: the example of Finland. J Med Genet 30:857–865CrossRefGoogle Scholar
  12. Elston RC (1981) Segregation analysis. Adv Hum Genet 11:63–120, 372–373Google Scholar
  13. Elston RC, George VT (1989) Age of onset, age at examination, and other covariates in the analysis of family data. Genet Epidemiol 6:217–220PubMedCrossRefGoogle Scholar
  14. Elston RC, Sobel E (1979) Sampling considerations in the gathering and analysis of pedigree data. Am J Hum Genet 31:62–69PubMedGoogle Scholar
  15. Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21:523–542PubMedGoogle Scholar
  16. Elston RC, Yelverton KC (1975) General models for segregation analysis. Am J Hum Genet 27:31–45PubMedGoogle Scholar
  17. Finnish Cancer Registry (2006) Cancer incidence in Finland 1995 and 2004. Cancer statistics at http://www.cancerregistry.fi last updated on 7 June 2006
  18. Gianferrari L, Arrigoni G, Cresseri A, Lovati G, Morganti G (1956) Genetic and clinico-statistical research on neoplasms of the prostate. Acta Gerontol Milano 5:224–233PubMedGoogle Scholar
  19. Gong G, Oakley-Girvan I, Wu AH, Kolonel LN, John EM, West DW, Felberg A, Gallagher RP, Whittemore AS (2002) Segregation analysis of prostate cancer in 1,719 white, African–American and Asian–American families in the United States and Canada. Cancer Causes Control 13:471–482PubMedCrossRefGoogle Scholar
  20. Grönberg H, Damber L, Damber JE, Iselius L (1997) Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146:552–557PubMedGoogle Scholar
  21. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  22. Mäkinen T, Tammela TLJ, Stenman U-H, Määttänen L, Rannikko S, Aro J, Juusela H, Hakama M, Auvinen A (2002). Family history and prostate cancer screening with prostate-specific antigen. J Clin Oncol 20(11):2658–2663PubMedCrossRefGoogle Scholar
  23. Mäkinen T, Tammela TLJ, Hakama M, Stenman U-H, Rannikko S, Aro J, Juusela H, Määttänen L, Auvinen A (2003) Tumor characteristics in a population-based prostate cancer screening trial with prostate-specific antigen. Clin Cancer Res 9:2435–2439PubMedGoogle Scholar
  24. Matikainen MP, Pukkala E, Schleutker J, Tammela TL, Koivisto P, Sankila R, Kallioniemi OP (2001) Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 12:223–230CrossRefGoogle Scholar
  25. Monroe KR, Yu MC, Kolonel LN, Coetzee GA, Wilkens LR, Ross RK, Henderson BE (1995) Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1:827–829PubMedCrossRefGoogle Scholar
  26. Narod SA, Dupont A, Cusan L, Diamond P, Gomez JL, Suburu R, Labrie F (1995) The impact of family history on early detection of prostate cancer. Nat Med 1:99–101PubMedCrossRefGoogle Scholar
  27. Peltonen L (1997) Molecular background of the Finnish disease heritage. Ann Med 29:553–556PubMedGoogle Scholar
  28. Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, Wein AJ, Malkowicz SB (2000) Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 67:1014–1019PubMedCrossRefGoogle Scholar
  29. Rökman A, Ikonen T, Mononen N, Autio V, Matikainen M.P, Koivisto PA, Tammela TL, Kallioniemi OP, Schleutker J (2001) ELAC2/HPC2 involvement in hereditary and sporadic prostate caner. Cancer Res 61:6038–6041PubMedGoogle Scholar
  30. Rökman A, Ikonen T, Seppälä EH, Nupponen N, Autio V, Mononen N, Bailey-Wilson J, Trent J, Carpten J, Matikainen MP, Koivisto PA, Tammela TL, Kallioniemi OP, Schleutker J (2002) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70 (5):1299–1304PubMedCrossRefGoogle Scholar
  31. SAGE 3.1. (1997) Statistical analysis for genetic epidemiology, release 3.1. Computer program package available from the Department of Epidemiology and Biostatistics, Rammelcamp Center for Education and Research, MetroHealth campus, Case Western Reserve University, ClevelandGoogle Scholar
  32. Schaid DJ (2004) The complex genetic epidemiology of prostate cancer. Hum Mol Genet 13 Spec no. 1, pp R103–R121Google Scholar
  33. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62:1425–1438PubMedCrossRefGoogle Scholar
  34. Schleutker J, Matikainen M, Smith J, Koivisto P, Baffoe-Bonnie A, Kainu T, Gillanders E, Sankila R, Pukkala E, Carpten J, Stephan D, Tammela T, Brownstein M, Bailey-Wilson J, Trent J, Kallioniemi OP (2000) A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland: frequent HPCX linkage in families with late-onset disease. Clin Cancer Res 6(12):4810–4815PubMedGoogle Scholar
  35. Schleutker J, Baffoe-Bonnie AB, Gillanders E, Kainu T, Jones MP, Freas-Lutz D, Markey C, Gildea D, Riedesel E, Albertus J, Gibbs KD Jr, Matikainen M, Koivisto PA, Tammela T, Bailey-Wilson JE, Trent JM, Kallioniemi OP (2003) Genome-wide scan for linkage in Finnish hereditary prostate cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25–26. Prostate 57:280–289PubMedCrossRefGoogle Scholar
  36. Seppälä EH, Ikonen T, Autio V, Rökman A, Mononen N, Matikainen MP, Tammela TL, Schleutker J (2003a) Germ-line alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9:5252–5256Google Scholar
  37. Seppälä EH, Ikonen T, Mononen N, Autio V, Rökman A, Matikainen MP, Tammela TL, Schleutker J (2003b) CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 89:1966–1970CrossRefGoogle Scholar
  38. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, Nusskern DR, Damber JE, Bergh A, Emanuelsson M, Kallioniemi OP, Walker-Daniels J, Bailey-Wilson JE, Beaty TH, Meyers DA, Walsh PC, Collins FS, Trent JM, Isaacs WB (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274:1371–1374PubMedCrossRefGoogle Scholar
  39. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, Camp NJ et al (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180PubMedCrossRefGoogle Scholar
  40. Teppo L, Pukkala E, Lehtonen M (1994) Data quality and quality control of a population-based cancer registry, experience in Finland. Acta Oncol 33:365–369PubMedGoogle Scholar
  41. Valeri A, Briollais L, Azzouzi R, Fournier G, Mangin P, Berthon P, Cussenot O, Demenais F (2003) Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother–brother dependence. Ann Hum Genet 67:125–137PubMedCrossRefGoogle Scholar
  42. Verhage BA, Baffoe-Bonnie AB, Baglietto L, Smith DS, Bailey-Wilson JE, Beaty TH, Catalona WJ, Kiemeney LA (2001) Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 57:97–101PubMedCrossRefGoogle Scholar
  43. World Health Organization (2003) Global cancer rates could increase by 50% to 15 million by 2020 http://www.who.int/mediacentre/news/releases/2003/pr27/en/
  44. Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS, Walsh P, Isaacs W, Schleutker J, Matikainen M, Tammela T, Visakorpi T, Kallioniemi OP, Berry R, Schaid D, French A, McDonnell S, Schroeder J, Blute M, Thibodeau S, Trent J (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20:175–179PubMedCrossRefGoogle Scholar
  45. Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D et al (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321–325PubMedCrossRefGoogle Scholar
  46. Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Eeles RA et al (2005) A Combined genome-wide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 77:219–229PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sanna Pakkanen
    • 1
  • Agnes B. Baffoe-Bonnie
    • 2
    • 3
  • Mika P. Matikainen
    • 4
  • Pasi A. Koivisto
    • 1
  • Teuvo L. J. Tammela
    • 4
  • Snehal Deshmukh
    • 2
  • Liang Ou
    • 2
  • Joan E. Bailey-Wilson
    • 3
  • Johanna Schleutker
    • 1
  1. 1.Laboratory of Cancer Genetics, Institute of Medical TechnologyUniversity of Tampere and Tampere University HospitalTampereFinland
  2. 2.Division of Population ScienceFox Chase Cancer CenterPhiladelphiaUSA
  3. 3.National Human Genome Research InstituteNational Institutes of HealthBaltimoreUSA
  4. 4.Department of Urology, Tampere University Hospital and Medical SchoolUniversity of TampereTampereFinland

Personalised recommendations