Advertisement

Human Genetics

, Volume 121, Issue 1, pp 83–92 | Cite as

Quantitative linkage genome scan for atopy in a large collection of Caucasian families

  • Bradley T. Webb
  • Edwin van den Oord
  • Anthony Akkari
  • Steve Wilton
  • Tina Ly
  • Rachael Duff
  • Kathleen C. Barnes
  • Karin Carlsen
  • Jorrit Gerritsen
  • Warren Lenney
  • Michael Silverman
  • Peter Sly
  • John Sundy
  • John Tsanakas
  • Andrea von Berg
  • Moira Whyte
  • Malcolm Blumenthal
  • Jorgen Vestbo
  • Lefkos Middleton
  • Peter J. Helms
  • Wayne H. Anderson
  • Sreekumar G. PillaiEmail author
Original Investigation

Abstract

Quantitative phenotypes correlated with a complex disorder offer increased power to detect linkage in comparison to affected–unaffected classifications. Asthma is a complex disorder characterized by periods of bronchial obstruction and increased bronchial hyper reactivity. In childhood and early adulthood, asthma is frequently associated also with quantitative measures of atopy. Genome wide quantitative multipoint linkage analysis was conducted for serum IgE levels and percentage of positive skin prick test (SPTper) using three large groups of families originally ascertained for asthma. In this report, 438 and 429 asthma families were informative for linkage using IgE and SPTper which represents 690 independent families. Suggestive linkage (LOD ≥ 2) was found on chromosomes 1, 3, and 8q with maximum LODs of 2.34 (IgE), 2.03 (SPTper), and 2.25 (IgE) near markers D1S1653, D3S2322–D3S1764, and D8S2324, respectively. The results from chromosomes 1 and 3 replicate previous reports of linkage. We also replicate linkage to 5q with peak LODs of 1.96 (SPTper) and 1.77 (IgE) at or near marker D5S1480. Our results provide further evidence implicating chromosomes 1, 3, and 5q. The current report represents one of the biggest genome scans so far reported for asthma related phenotypes. This study also demonstrates the utility of increased sample sizes and quantitative phenotypes in linkage analysis of complex disorders.

Keywords

Asthma Atopic Dermatitis Skin Prick Test Atopic Asthma Suggestive Linkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

439_2006_285_MOESM1_ESM.xls (95 kb)
Supplementary material
439_2006_285_MOESM2_ESM.xls (224 kb)
Supplementary material

References

  1. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101PubMedCrossRefGoogle Scholar
  2. Aberer W, Kranke B (2002) Measurement of IgE antibodies using liquid allergens—an inter-method and inter-laboratory quality assessment. Wien Klin Wochenschr 114(21–22):929–937PubMedGoogle Scholar
  3. Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, et al (2003) Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 35(3):258–263PubMedCrossRefGoogle Scholar
  4. Anderson HR, Pottier AC, Strachan DP (1992) Asthma from birth to age 23: incidence and relation to prior and concurrent atopic disease. Thorax 47(7):537–542PubMedCrossRefGoogle Scholar
  5. Beyer K, Nickel R, Freidhoff L, Bjorksten B, Huang SK, Barnes KC, et al (2000) Association and linkage of atopic dermatitis with chromosome 13q12–14 and 5q31–33 markers. J Invest Dermatol 115(5):906–908PubMedCrossRefGoogle Scholar
  6. Blumenthal MN, Langefeld CD, Beaty TH, Bleecker ER, Ober C, Lester L, et al (2004) A genome-wide search for allergic response (atopy) genes in three ethnic groups: collaborative study on the genetics of asthma. Hum Genet 114(2):157–164PubMedCrossRefGoogle Scholar
  7. Cohen J (1983) The cost of dichotomization. Appl Psychol Meas 7:249–253Google Scholar
  8. Cots P, Pena JM, Botey J, Eseverri JL, Marin A, Ras R (1998) Determination of total and specific IgE using UNICAP 100: comparative study with the CAP system. Allergol Immunopathol (Madr) 26(5):223–227Google Scholar
  9. Court CS, Cook DG, Strachan DP (2002) Comparative epidemiology of atopic and non-atopic wheeze and diagnosed asthma in a national sample of English adults. Thorax 57(11):951–957PubMedCrossRefGoogle Scholar
  10. Douwes J, Gibson P, Pekkanen J, Pearce N (2002) Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57(7):643–648PubMedCrossRefGoogle Scholar
  11. Fulker DW, Cherny SS (1996) An improved multipoint sib-pair analysis of quantitative traits. Behav Genet 26(5):527–532PubMedCrossRefGoogle Scholar
  12. Haagerup A, Bjerke T, Schiotz PO, Binderup HG, Dahl R, Kruse TA (2002) Asthma and atopy—a total genome scan for susceptibility genes. Allergy 57(8):680–686PubMedCrossRefGoogle Scholar
  13. Hoffjan S, Ober C (2002) Present status on the genetic studies of asthma. Curr Opin Immunol 14(6):709–717PubMedCrossRefGoogle Scholar
  14. Kabesch M, Carr D, Weiland SK, von Mutius E (2004) Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin Exp Allergy 34(3):340–345PubMedCrossRefGoogle Scholar
  15. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M (2003) Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148(4):665–669PubMedCrossRefGoogle Scholar
  16. Kelly WJ, Hudson I, Phelan PD, Pain MC, Olinsky A (1990) Atopy in subjects with asthma followed to the age of 28 years. J Allergy Clin Immunol 85(3):548–557PubMedCrossRefGoogle Scholar
  17. Kurz T, Altmueller J, Strauch K, Ruschendorf F, Heinzmann A, Moffatt MF, et al (2005) A genome-wide screen on the genetics of atopy in a multiethnic European population reveals a major atopy locus on chromosome 3q21.3. Allergy 60(2):192–199PubMedCrossRefGoogle Scholar
  18. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, et al (2004) Characterization of a common susceptibility locus for asthma-related traits. Science 304(5668):300–304PubMedCrossRefGoogle Scholar
  19. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247PubMedCrossRefGoogle Scholar
  20. Lee YA, Wahn U, Kehrt R, Tarani L, Businco L, Gustafsson D, et al (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26(4):470–473PubMedCrossRefGoogle Scholar
  21. Los H, Postmus PE, Boomsma DI (2001) Asthma genetics and intermediate phenotypes: a review from twin studies. Twin Res 4(2):81–93PubMedCrossRefGoogle Scholar
  22. Nishio Y, Noguchi E, Shibasaki M, Kamioka M, Ichikawa E, Ichikawa K, et al (2003) Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 4(7):515–517PubMedCrossRefGoogle Scholar
  23. Ober C, Cox NJ, Abney M, Di Rienzo A, Lander ES, Changyaleket B, et al (1998) Genome-wide search for asthma susceptibility loci in a founder population. The collaborative study on the genetics of asthma. Hum Mol Genet 7(9):1393–1398PubMedCrossRefGoogle Scholar
  24. Pankratz VS, Iturria SJ (2001) A pedigree partitioning approach to quantitative trait loci mapping of IgE serum level in the GAW12 Hutterite data. Genet Epidemiol 21(suppl1):S258–S263PubMedGoogle Scholar
  25. Pillai SG, Cousens DJ, Barnes AA, Buckley PT, Chiano MN, Hosking LK, et al (2004) A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma. Pharmacogenetics 14(9):627–633PubMedCrossRefGoogle Scholar
  26. Pillai SG, Chiano MN, White NJ, Speer M, Barnes KC, Carlsen K, et al (2006) A genome-wide search for linkage to asthma phenotypes in the genetics of asthma international network families: evidence for a major susceptibility locus on chromosome 2p. Eur J Hum Genet 14(3):307–316PubMedCrossRefGoogle Scholar
  27. Ross S, Godden DJ, Abdalla M, McMurray D, Douglas A, Oldman D, et al (1995) Outcome of wheeze in childhood: the influence of atopy. Eur Respir J 8(12):2081–2087PubMedCrossRefGoogle Scholar
  28. Sears MR, Burrows B, Flannery EM, Herbison GP, Holdaway MD (1993) Atopy in childhood I gender and allergen related risks for development of hay fever and asthma. Clin Exp Allergy 23(11):941–948PubMedCrossRefGoogle Scholar
  29. Van den Oord EJCG (1999) A comparison between different designs and tests to detect QTLs in association studies. Behav Genet 29:245–256CrossRefGoogle Scholar
  30. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al (2002) Association of the ADAM33 gene with asthma and bronchial hyper responsiveness. Nature 418(6896):426–430PubMedCrossRefGoogle Scholar
  31. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29(2):175–178PubMedCrossRefGoogle Scholar
  32. Weiss KB, Sullivan SD, Lyttle CS (2000) Trends in the cost of illness for asthma in the US, 1985–1994. J Allergy Clin Immunol 106(3):493–499PubMedCrossRefGoogle Scholar
  33. Wijsman EM, Amos CI (1997) Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 14(6):719–735PubMedCrossRefGoogle Scholar
  34. Xuan W, Marks GB, Toelle BG, Belousova E, Peat JK, Berry G, et al (2002) Risk factors for onset and remission of atopy, wheeze, and airway hyper responsiveness. Thorax 57(2):104–109PubMedCrossRefGoogle Scholar
  35. Xu X, Fang Z, Wang B, Chen C, Guang W, Jin Y, et al (2001) A genome wide search for quantitative-trait loci underlying asthma. Am J Hum Genet 69(6):1271–1277PubMedCrossRefGoogle Scholar
  36. Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, et al (2003) Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 34(2):181–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bradley T. Webb
    • 1
  • Edwin van den Oord
    • 1
  • Anthony Akkari
    • 2
  • Steve Wilton
    • 3
  • Tina Ly
    • 3
  • Rachael Duff
    • 3
  • Kathleen C. Barnes
    • 4
  • Karin Carlsen
    • 5
  • Jorrit Gerritsen
    • 6
  • Warren Lenney
    • 7
  • Michael Silverman
    • 8
  • Peter Sly
    • 9
  • John Sundy
    • 10
  • John Tsanakas
    • 11
  • Andrea von Berg
    • 12
  • Moira Whyte
    • 13
  • Malcolm Blumenthal
    • 14
  • Jorgen Vestbo
    • 15
  • Lefkos Middleton
    • 2
  • Peter J. Helms
    • 16
  • Wayne H. Anderson
    • 2
  • Sreekumar G. Pillai
    • 2
    Email author
  1. 1.Virginia Institute for Psychiatric and Behavioral Genetics, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA
  2. 2.Genetics Research, Glaxo SmithKline27709USA
  3. 3.Australian Neuromuscular Research Institute, Experimental Molecular Medicine GroupPerthAustralia
  4. 4.Departments of Medicine and Epidemiology, Mary Beryl Patch Turnbull Scholar ProgramJohns Hopkins UniversityBaltimoreUSA
  5. 5.Ullevaal University HospitalOsloNorway
  6. 6.Groningen University HospitalGroningenThe Netherlands
  7. 7.Directorate of Child Health, Academic Department of PediatricsNorth Staffordshire HospitalStoke on TrentUK
  8. 8.Division of Child HealthUniversity of LeicesterLeicesterUK
  9. 9.Center for Child Health ResearchUniversity of Western AustraliaPerthAustralia
  10. 10.Duke University Medical CenterDurhamUSA
  11. 11.Pediatric Respiratory UnitHippokration General HospitalThessalonikiGreece
  12. 12.Foschungsinstitut an der Klinik für Kinderund Jugendmedizin Marien-HospitalWeselGermany
  13. 13.Academic Unit of Respiratory MedicineUniversity of SheffieldSheffieldUK
  14. 14.Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisUSA
  15. 15.Institute of Preventive Medicine, Kommunehospitalet, and Department of Respiratory MedicineHvidovre University HospitalCopenhagenDenmark
  16. 16.Department of Child HealthUniversity of Aberdeen Royal Aberdeen Children’s HospitalAberdeenUK

Personalised recommendations