Human Genetics

, Volume 120, Issue 4, pp 589–601

Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts

  • Virginia B. Mattis
  • Ravi Rai
  • Jinhua Wang
  • Cheng-Wei T. Chang
  • Tristan Coady
  • Christian L. Lorson
Original Investigation

Abstract

Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA is caused by the homozygous absence of survival motor neuron-1 (SMN1). SMN2, a nearly identical copy gene, is retained in all SMA patients and encodes an identical protein as SMN1; however, SMN1 and SMN2 differ by a silent C to T transition which results in the production of an alternatively spliced isoform (SMNΔ7), which encodes a defective protein, demonstrating that the absence of the short peptide encoded by SMN exon 7 is critical in SMA development. Previously, we have shown that for some functions heterologous sequences can compensate for the exon 7 peptide, suggesting that the SMN C-terminus functions non-specifically. Consistent with this hypothesis, we now identify novel aminoglycosides that can induce SMN protein levels in patient fibroblasts. This hypothesis was supported, in part, by a novel fluorescent SMN read-through assay. Interestingly, however, through the development of a SMN exon 7-specific antibody, results suggested that levels of normal full-length SMN might also be elevated by aminoglycoside treatment. These results demonstrate that the compounds that promote read-through may provide an alternative platform for the discovery of compounds that induce SMN protein levels.

Supplementary material

References

  1. Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849PubMedCrossRefGoogle Scholar
  2. Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12:59–65PubMedCrossRefGoogle Scholar
  3. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC, Wilkes F, Mitrophanous KA, Kingsman SM, Burghes AH, Mazarakis ND (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 114:1726–1731PubMedCrossRefGoogle Scholar
  4. Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL (1999) Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 104:375–381PubMedCrossRefGoogle Scholar
  5. Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F, Moscato U, Bertini E, Mercuri E, Neri G (2005) Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 13:256–259PubMedCrossRefGoogle Scholar
  6. Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489PubMedCrossRefGoogle Scholar
  7. Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384PubMedCrossRefGoogle Scholar
  8. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813PubMedCrossRefGoogle Scholar
  9. Chang CW, Hui Y, Elchert B, Wang J, Li J, Rai R (2002) Pyranmycins, a novel class of aminoglycosides with improved acid stability: the SAR of D-pyranoses on ring III of pyranmycin. Org Lett 4:4603–4606PubMedCrossRefGoogle Scholar
  10. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214PubMedCrossRefGoogle Scholar
  11. Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110PubMedCrossRefGoogle Scholar
  12. Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, Bebok Z, Whitsett JA, Dey CR, Colledge WH, Evans MJ, Sorscher EJ, Bedwell DM (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 80:595–604PubMedCrossRefGoogle Scholar
  13. Echaniz-Laguna A, Guiraud-Chaumeil C, Tranchant C, Reeber A, Melki J, Warter JM (2002) Homozygous exon 7 deletion of the SMN centromeric gene (SMN2): a potential susceptibility factor for adult-onset lower motor neuron disease. J Neurol 249:290–293PubMedCrossRefGoogle Scholar
  14. Elchert B, Li J, Wang J, Hui Y, Rai R, Ptak R, Ward P, Takemoto JY, Bensaci M, Chang CW (2004) Application of the synthetic aminosugars for glycodiversification: synthesis and antimicrobial studies of pyranmycin. J Org Chem 69:1513–1523PubMedCrossRefGoogle Scholar
  15. Gabanella F, Carissimi C, Usiello A, Pellizzoni L (2005) The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet 14:3629–3642PubMedCrossRefGoogle Scholar
  16. Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH (2005) Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 58:194–202PubMedCrossRefGoogle Scholar
  17. Haddad H, Cifuentes-Diaz C, Miroglio A, Roblot N, Joshi V, Melki J (2003) Riluzole attenuates spinal muscular atrophy disease progression in a mouse model. Muscle Nerve 28:432–437PubMedCrossRefGoogle Scholar
  18. Hebert MD, Szymczyk PW, Shpargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15:2720–2729PubMedCrossRefGoogle Scholar
  19. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469PubMedCrossRefGoogle Scholar
  20. Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2000) Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–169PubMedCrossRefGoogle Scholar
  21. Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, Flanigan KM (2004) Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 55:422–426PubMedCrossRefGoogle Scholar
  22. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70PubMedCrossRefGoogle Scholar
  23. Hua Y, Zhou J (2004) Modulation of SMN nuclear foci and cytoplasmic localization by its C-terminus. Cell Mol Life Sci 61:2658–2663PubMedCrossRefGoogle Scholar
  24. Iannaccone ST, Smith SA, Simard LR (2004) Spinal muscular atrophy. Curr Neurol Neurosci Rep 4:74–80PubMedGoogle Scholar
  25. Jarecki J, Chen X, Bernardino A, Coovert DD, Whitney M, Burghes A, Stack J, Pollok BA (2005) Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet 14:2003–2018PubMedCrossRefGoogle Scholar
  26. Keeling KM, Brooks DA, Hopwood JJ, Li P, Thompson JN, Bedwell DM (2001) Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Genet 10:291–299PubMedCrossRefGoogle Scholar
  27. Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14:1171–1182PubMedCrossRefGoogle Scholar
  28. Lai CH, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci USA 101:15676–15681PubMedCrossRefGoogle Scholar
  29. Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857PubMedCrossRefGoogle Scholar
  30. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Paslier DL, Frezal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy- determining gene. Cell 80:155–165PubMedCrossRefGoogle Scholar
  31. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedCrossRefGoogle Scholar
  32. Lefebvre S, Burglen L, Frezal J, Munnich A, Melki J (1998) The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet 7:1531–1536PubMedCrossRefGoogle Scholar
  33. Li J, Wang J, Czyryca PG, Chang H, Orsak TW, Evanson R, Chang CW (2004) Application of glycodiversification: expedient synthesis and antibacterial evaluation of a library of kanamycin B analogues. Org Lett 6:1381–1384PubMedCrossRefGoogle Scholar
  34. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. Embo J 15:3555–3565PubMedGoogle Scholar
  35. Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66PubMedCrossRefGoogle Scholar
  36. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311PubMedCrossRefGoogle Scholar
  37. Lunn MR, Root DE, Martino AM, Flaherty SP, Kelley BP, Coovert DD, Burghes AH, Man NT, Morris GE, Zhou J, Androphy EJ, Sumner CJ, Stockwell BR (2004) Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol 11:1489–1493PubMedCrossRefGoogle Scholar
  38. Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–1055PubMedCrossRefGoogle Scholar
  39. Matera AG, Frey MR (1998) Coiled bodies and gems: Janus or Gemini? Am J Hum Genet 63:317–321PubMedCrossRefGoogle Scholar
  40. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183PubMedCrossRefGoogle Scholar
  41. Monani UR, Coovert DD, Burghes AH (2000a) Animal models of spinal muscular atrophy. Hum Mol Genet 9:2451–2457CrossRefGoogle Scholar
  42. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossol W, Prior TW, Morris GE, Burghes AH (2000b) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339CrossRefGoogle Scholar
  43. Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C, DiCocco JM, Lorson C, Androphy EJ, Sendtner M, Podell M, Burghes AH (2003) A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160:41–52PubMedCrossRefGoogle Scholar
  44. Novelli G, Calza L, Amicucci P, Giardino L, Pozza M, Silani V, Pizzuti A, Gennarelli M, Piombo G, Capon F, Dallapiccola B (1997) Expression study of survival motor neuron gene in human fetal tissues. Biochem Mol Med 61:102–106PubMedCrossRefGoogle Scholar
  45. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312PubMedCrossRefGoogle Scholar
  46. Sleat DE, Sohar I, Gin RM, Lobel P (2001) Aminoglycoside-mediated suppression of nonsense mutations in late infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol 5 Suppl A:57–62Google Scholar
  47. Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654PubMedCrossRefGoogle Scholar
  48. Wagner KR, Hamed S, Hadley DW, Gropman AL, Burstein AH, Escolar DM, Hoffman EP, Fischbeck KH (2001) Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 49:706–711PubMedCrossRefGoogle Scholar
  49. Wang J, Li J, Chen HN, Chang H, Tanifum CT, Liu HH, Czyryca PG, Chang CW (2005) Glycodiversification for the optimization of the kanamycin class aminoglycosides. J Med Chem 48:6271–6285PubMedCrossRefGoogle Scholar
  50. Winkler C, Eggert C, Gradl D, Meister G, Giegerich M, Wedlich D, Laggerbauer B, Fischer U (2005) Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev 19:2320–2330PubMedCrossRefGoogle Scholar
  51. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237PubMedCrossRefGoogle Scholar
  52. Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL (2005) A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14:1199–1210PubMedCrossRefGoogle Scholar
  53. Young PJ, Le TT, Dunckley M, Nguyen TM, Burghes AH, Morris GE (2001) Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. Exp Cell Res 265:252–261PubMedCrossRefGoogle Scholar
  54. Zhang ML, Lorson CL, Androphy EJ, Zhou J (2001) An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 8:1532–1538PubMedCrossRefGoogle Scholar
  55. Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Virginia B. Mattis
    • 1
  • Ravi Rai
    • 2
  • Jinhua Wang
    • 2
  • Cheng-Wei T. Chang
    • 2
  • Tristan Coady
    • 1
  • Christian L. Lorson
    • 1
  1. 1.Department of Veterinary Pathobiology, Life Sciences CenterUniversity of MissouriColumbiaUSA
  2. 2.Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations