Human Genetics

, Volume 120, Issue 1, pp 101–110

The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells

  • Markus Riessland
  • Lars Brichta
  • Eric Hahnen
  • Brunhilde Wirth
Original Investigation


Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder causing infant death in half of all patients. Homozygous loss of the survival motor neuron 1 (SMN1) gene causes SMA, whereas the number of the SMN2 copy genes modulates the severity of the disease. Due to a silent mutation within an exonic splicing enhancer, SMN2 mainly produces alternatively spliced transcripts lacking exon 7 and only ∼ 10% of a full-length protein identical to SMN1. However, SMN2 represents a promising target for an SMA therapy. The correct splicing of SMN2 can be efficiently restored by over-expression of the splicing factor Htra2-β1 as well as by exogenous factors like drugs that inhibit histone deacetylases (HDACs). Here we show that the novel benzamide M344, an HDAC inhibitor, up-regulates SMN2 protein expression in fibroblast cells derived from SMA patients up to 7-fold after 64 h of treatment. Moreover, M344 significantly raises the total number of gems/nucleus as well as the number of nuclei that contain gems. This is the strongest in vitro effect of a drug on the SMN protein level reported so far. The reversion of Δ7-SMN2 into FL-SMN2 transcripts as demonstrated by quantitative RT-PCR is most likely facilitated by elevated levels of Htra2-β1. Investigations of the cytotoxicity of M344 using an MTT assay revealed toxic cell effects only at very high concentrations. In conclusion, M344 can be considered as highly potent HDAC inhibitor which is active at low doses and therefore represents a promising candidate for a causal therapy of SMA.


  1. Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12:59–65PubMedCrossRefGoogle Scholar
  2. Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849PubMedCrossRefGoogle Scholar
  3. Baron-Delage S, Abadie A, Echaniz-Laguna A, Melki J, Beretta L (2000) Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol Med 6:957–968PubMedGoogle Scholar
  4. Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F, Moscato U, Bertini E, Mercuri E, Neri G (2005) Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 13:256–259PubMedCrossRefGoogle Scholar
  5. Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489PubMedCrossRefGoogle Scholar
  6. Brichta L, Holker I, Haug K, Klockgether T, Wirth B (2006) In-vivo activation of SMN in SMA carriers and patients treated with valpr. Ann Neurol 59 April 10; [Epub ahead of print]Google Scholar
  7. Burghes AH (1997) When is a deletion not a deletion? When it is converted. Am J Hum Genet 61:9–15PubMedCrossRefGoogle Scholar
  8. Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281:8126–8134PubMedCrossRefGoogle Scholar
  9. Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384PubMedCrossRefGoogle Scholar
  10. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78:63–77PubMedCrossRefGoogle Scholar
  11. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813PubMedCrossRefGoogle Scholar
  12. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214PubMedCrossRefGoogle Scholar
  13. Eyupoglu IY, Hahnen E, Trankle C, Savaskan NE, Siebzehnrubl FA, Buslei R, Lemke D, Wick W, Fahlbusch R, Blumcke I (2006) Experimental therapy of malignant gliomas using the inhibitor of class I histone deacetylases MS-275. Mol Cancer Ther May 5; [Epub ahead of print]Google Scholar
  14. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368PubMedCrossRefGoogle Scholar
  15. Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH (2005) Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 58:194–202 PubMedCrossRefGoogle Scholar
  16. Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51–56PubMedCrossRefGoogle Scholar
  17. Hahnen E, Eyupoglu IY, Brichta L, Haastert K, Tränkle C, Siebzehnrübl FA, Riessland M, Hölker I, Claus P, Romstöck J, Buslei R, Wirth B, Blümcke I (2006) In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem DOI:10.1111/j.1471–4159.2006.03868.xGoogle Scholar
  18. Helmken C, Hofmann Y, Schoenen F, Oprea G, Raschke H, Rudnik-Schoneborn S, Zerres K, Wirth B (2003) Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 114:11–21PubMedCrossRefGoogle Scholar
  19. Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B (2000) Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97:9618–9623PubMedCrossRefGoogle Scholar
  20. Hofmann Y, Wirth B (2002) hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum Mol Genet 11:2037–2049PubMedCrossRefGoogle Scholar
  21. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70PubMedCrossRefGoogle Scholar
  22. Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P (1999) Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 42:4669–4679PubMedCrossRefGoogle Scholar
  23. Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463PubMedCrossRefGoogle Scholar
  24. Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14(9):1171–1182PubMedCrossRefGoogle Scholar
  25. Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857PubMedCrossRefGoogle Scholar
  26. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedCrossRefGoogle Scholar
  27. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedCrossRefGoogle Scholar
  28. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. Embo J 15:3555–3565PubMedGoogle Scholar
  29. Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021PubMedCrossRefGoogle Scholar
  30. Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265PubMedCrossRefGoogle Scholar
  31. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311PubMedCrossRefGoogle Scholar
  32. Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66PubMedCrossRefGoogle Scholar
  33. Lunn MR, Root DE, Martino AM, Flaherty SP, Kelley BP, Coovert DD, Burghes AH, Man NT, Morris GE, Zhou J, Androphy EJ, Sumner CJ, Stockwell BR (2004) Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol 11:1489–1493PubMedCrossRefGoogle Scholar
  34. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossol W, Prior TW, Morris GE, Burghes AH (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339PubMedCrossRefGoogle Scholar
  35. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  36. Munsat TL, Davies KE (1992) International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 2:423–428PubMedCrossRefGoogle Scholar
  37. Patrizi AL, Tiziano F, Zappata S, Donati MA, Neri G, Brahe C (1999) SMN protein analysis in fibroblast, amniocyte and CVS cultures from spinal muscular atrophy patients and its relevance for diagnosis. Eur J Hum Genet 7:301–309PubMedCrossRefGoogle Scholar
  38. Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89:325–328PubMedCrossRefGoogle Scholar
  39. Pearn JH, Hudgson P, Walton JN (1978) A clinical and genetic study of spinal muscular atrophy of adult onset: the autosomal recessive form as a discrete disease entity. Brain 101:591–606PubMedCrossRefGoogle Scholar
  40. Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615–624PubMedCrossRefGoogle Scholar
  41. Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812PubMedCrossRefGoogle Scholar
  42. Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11:93–105PubMedCrossRefGoogle Scholar
  43. Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654PubMedCrossRefGoogle Scholar
  44. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237PubMedCrossRefGoogle Scholar
  45. Young PJ, DiDonato CJ, Hu D, Kothary R, Androphy EJ, Lorson CL (2002) SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum Mol Genet 11:577–587PubMedCrossRefGoogle Scholar
  46. Zerres K, Rudnik-Schoneborn S, Forkert R, Wirth B (1995) Genetic basis of adult-onset spinal muscular atrophy. Lancet 346:1162PubMedCrossRefGoogle Scholar
  47. Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637PubMedGoogle Scholar
  48. Zhang ML, Lorson CL, Androphy EJ, Zhou J (2001) An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 8:1532–1538PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Markus Riessland
    • 1
  • Lars Brichta
    • 1
  • Eric Hahnen
    • 1
  • Brunhilde Wirth
    • 1
  1. 1.Institute of Human Genetics, Institute of Genetics, and Center for Molecular Medicine CologneUniversity of CologneCologneGermany

Personalised recommendations