Human Genetics

, Volume 120, Issue 1, pp 1–21 | Cite as

A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes I: general principles and overview

Review

Abstract

The 3′ regulatory regions (3′ RRs) of human genes play an important role in regulating mRNA 3′ end formation, stability/degradation, nuclear export, subcellular localization and translation and are consequently rich in regulatory elements. Although 3′ RRs contain only ∼0.2% of known disease-associated mutations, this is likely to represent a rather conservative estimate of their actual prevalence. In an attempt to catalogue 3′ RR-mediated disease and also to gain a greater understanding of the functional role of regulatory elements within 3′ RRs, we have performed a systematic analysis of disease-associated 3′ RR variants; 121 3′ RR variants in 94 human genes were collated. These included 17 mutations in the upstream core polyadenylation signal sequence (UCPAS), 81 in the upstream sequence (USS) between the translational termination codon and the UCPAS, 6 in the left arm of the ‘spacer’ sequence (LAS) between the UCPAS and the pre-mRNA cleavage site (CS), 3 in the right arm of the ‘spacer’ sequence (RAS) or downstream core polyadenylation signal sequence (DCPAS) and 7 in the downstream sequence (DSS) of the 3′-flanking region, with 7 further mutations being treated as isolated examples. All the UCPAS mutations and the rather unusual cases of the DMPK, SCA8, FCMD and GLA mutations exert a significant effect on the mRNA phenotype and are usually associated with monogenic disease. By contrast, most of the remaining variants are polymorphisms that exert a comparatively minor influence on mRNA expression, but which may nevertheless predispose to or otherwise modify complex clinical phenotypes. Considerable efforts have been made to validate/elucidate the mechanisms through which the 3′ untranslated region (3’ UTR) variants affect gene expression. It is hoped that the integrative approach employed here in the study of naturally occurring variants of actual or potential pathological significance will serve to complement ongoing efforts to identify all functional regulatory elements in the human genome.

Supplementary material

439_2006_180_MOESM1_ESM.doc (58 kb)
Supplementary material

References

  1. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Sestan N, State MW (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320PubMedGoogle Scholar
  2. Amrani N, Dong S, He F, Ganesan R, Ghosh S, Kervestin S, Li C, Mangus DA, Spatrick P, Jacobson A (2006) Aberrant termination triggers nonsense-mediated mRNA decay. Biochem Soc Trans 34:39–42PubMedGoogle Scholar
  3. Anjos SM, Tessier MC, Polychronakos C (2004) Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. J Clin Endocrinol Metab 89:6257–6265PubMedGoogle Scholar
  4. Balim Z, Kosova B, Falzon K, Bezzina Wettinger S, Colak Y (2003) Budd-Chiari syndrome in a patient heterozygous for the point mutation C20221T of the prothrombin gene. J Thromb Haemost 1:852–853PubMedGoogle Scholar
  5. Baralle D, Baralle M (2005) Splicing in action: assessing disease causing sequence changes. J Med Genet 42:737–748PubMedGoogle Scholar
  6. Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11:1520–1526PubMedGoogle Scholar
  7. Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D (2000) Patterns of variant polyadenylation signal usage in human genes. Genome Res 10:1001–1010PubMedGoogle Scholar
  8. Bellgrove MA, Hawi Z, Kirley A, Fitzgerald M, Gill M, Robertson IH (2005) Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology 30:2290–2297PubMedGoogle Scholar
  9. Bennett CL, Brunkow ME, Ramsdell F, O’Briant KC, Zhu Q, Fuleihan RL, Shigeoka AO, Ochs HD, Chance PF (2001) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53:435–439PubMedGoogle Scholar
  10. Beyer K, Dandekar T, Keller W (1997) RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA. J Biol Chem 272:26769–26779PubMedGoogle Scholar
  11. Birnstiel ML, Busslinger M, Strub K (1985) Transcription termination and 3′ processing: the end is in site! Cell 41:349–359PubMedGoogle Scholar
  12. Blum M, Grant DM, McBride W, Heim M, Meyer UA (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203PubMedCrossRefGoogle Scholar
  13. Bonapace G, Concolino D, Formicola S, Strisciuglio P (2003) A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J Med Genet 40:913–917PubMedGoogle Scholar
  14. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper PS, Shaw DJ, Housman DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808PubMedGoogle Scholar
  15. Butt C, Sun S, Greenwood C, Gladman D, Rahman P (2005) Lack of association of SLC22A4, SLC22A5, SLC9A3R1 and RUNX1 variants in psoriatic arthritis. Rheumatology (Oxford) 44:820–821Google Scholar
  16. Cao A, Moi P (2002) Regulation of the globin genes. Pediatr Res 51:415–421PubMedGoogle Scholar
  17. Capon F, Helms C, Veal CD, Tillman D, Burden AD, Barker JN, Bowcock AM, Trembath RC (2004) Genetic analysis of PSORS2 markers in a UK dataset supports the association between RAPTOR SNPs and familial psoriasis. J Med Genet 41:459–460PubMedGoogle Scholar
  18. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y FANTOM Consortium; RIKEN Genome Exploration Research Group, Genome Science Group (Genome Network Project Core Group) (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563PubMedGoogle Scholar
  19. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298PubMedGoogle Scholar
  20. Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL (2004) G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3′-end formation. J Thromb Haemost 2:119–127PubMedGoogle Scholar
  21. Ceelie H, Spaargaren-Van Riel CC, Lyon E, Bertina RM, Vos HL (2005) Functional analysis of two polymorphisms in the 3′-UTR of the human prothrombin gene. J Thromb Haemost 3:806–808PubMedGoogle Scholar
  22. Chabanon H, Mickleburgh I, Hesketh J (2004) Zipcodes and postage stamps: mRNA localisation signals and their trans-acting binding proteins. Brief Funct Genomic Proteomic 3:240–256PubMedGoogle Scholar
  23. Chen F, MacDonald CC, Wilusz J (1995) Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res 23:2614–2620PubMedGoogle Scholar
  24. Chen JM, Chuzhanova N, Stenson PD, Ferec C, Cooper DN (2005a) Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum Mutat 25:207–221Google Scholar
  25. Chen JM, Stenson PD, Cooper DN, Ferec C (2005b) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117:411–427Google Scholar
  26. Chen JM, Ferec C, Cooper DN (2006) LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J Biomed Biotechnol (http://www.hindawi.com/GetSpecialIssueArticles.aspx?journal=JBB&volume=2006&si=1)
  27. Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890PubMedGoogle Scholar
  28. Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641PubMedGoogle Scholar
  29. Danckwardt S, Gehring NH, Neu-Yilik G, Hundsdoerfer P, Pforsich M, Frede U, Hentze MW, Kulozik AE (2004) The prothrombin 3′ end formation signal reveals a unique architecture that is sensitive to thrombophilic gain-of-function mutations. Blood 104:428–435PubMedGoogle Scholar
  30. Day JW, Ranum LP (2005) RNA pathogenesis of the myotonic dystrophies. Neuromusc Disord 15:5–16PubMedGoogle Scholar
  31. Dye MJ, Proudfoot NJ (2001) Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105:669–681PubMedGoogle Scholar
  32. Edwalds-Gilbert G, Veraldi KL, Milcarek C (1997) Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 25:2547–2561PubMedGoogle Scholar
  33. ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306:636–640Google Scholar
  34. Feng Y, Wigg KG, Makkar R, Ickowicz A, Pathare T, Tannock R, Roberts W, Malone M, Kennedy JL, Schachar R, Barr CL (2005) Sequence variation in the 3′-untranslated region of the dopamine transporter gene and attention-deficit hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet 139:1–6Google Scholar
  35. Fornace AJ Jr, Cummings DE, Comeau CM, Kant JA, Crabtree GR (1984) Structure of the human gamma-fibrinogen gene. Alternate mRNA splicing near the 3′ end of the gene produces gamma A and gamma B forms of gamma-fibrinogen. J Biol Chem 259:12826–12830PubMedGoogle Scholar
  36. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1:152–156PubMedGoogle Scholar
  37. Furugaki K, Shirasawa S, Ishikawa N, Ito K, Ito K, Kubota S, Kuma K, Tamai H, Akamizu T, Hiratani H, Tanaka M, Sasazuki T (2004) Association of the T-cell regulatory gene CTLA4 with Graves’ disease and autoimmune thyroid disease in the Japanese. J Hum Genet 49:166–168PubMedGoogle Scholar
  38. Gehring NH, Frede U, Neu-Yilik G, Hundsdoerfer P, Vetter B, Hentze MW, Kulozik AE (2001) Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet 28:389–392PubMedGoogle Scholar
  39. Gieselmann V, Polten A, Kreysing J, von Figura K (1989) Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci USA 86:9436–9440PubMedGoogle Scholar
  40. Gilmartin GM (2005) Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev 19:2517–2521PubMedGoogle Scholar
  41. Giordano PC, Bouva MJ, Van Delft P, Akkerman N, Kappers-Klunne MC, Harteveld CL (2005) A new polyadenylation site mutation associated with a mild beta-thalassemia phenotype. Haematologica 90:551–552PubMedGoogle Scholar
  42. Graber JH, Cantor CR, Mohr SC, Smith TF (1999) In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc Natl Acad Sci USA 96:14055–14060PubMedGoogle Scholar
  43. Gu J, Liang D, Wang Y, Lu C, Wu X (2005) Effects of N-acetyl transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res 581:97–104PubMedGoogle Scholar
  44. Hall-Pogar T, Zhang H, Tian B, Lutz CS (2005) Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res 33:2565–2579PubMedGoogle Scholar
  45. Hao K, Niu T, Xu X, Fang Z, Xu X (2005) Single-nucleotide polymorphisms of the KCNS3 gene are significantly associated with airway hyperresponsiveness. Hum Genet 116:378–383PubMedGoogle Scholar
  46. Harrison GA, Humphrey KE, Jakobsen IB, Cooper DW (1993) A 14 bp deletion polymorphism in the HLA-G gene. Hum Mol Genet 2:2200PubMedGoogle Scholar
  47. Harteveld CL, Losekoot M, Haak H, Heister GA, Giordano PC, Bernini LF (1994) A novel polyadenylation signal mutation in the alpha 2-globin gene causing alpha thalassaemia. Br J Haematol 87:139–143PubMedGoogle Scholar
  48. Harvey JS, Carey WF, Morris CP (1998) Importance of the glycosylation and polyadenylation variants in metachromatic leukodystrophy pseudodeficiency phenotype. Hum Mol Genet 7:1215–1219PubMedGoogle Scholar
  49. Hayashi S, Watanabe J, Nakachi K, Kawajiri K (1991) Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem (Tokyo) 110:407–411Google Scholar
  50. Heath JA, Beaverson K, Giardina P, Boehm C, Cutting G (2001) A novel beta-thalassemia intermedia phenotype containing Nt494+129T→C and NT494+132C→A mutations in cis and a Nt168C→T (βo 39 point) mutation in trans. Am J Hematol 67:57–58PubMedGoogle Scholar
  51. Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J, Kwok PY, Menter A, Bowcock AM (2003) A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 35:349–356PubMedGoogle Scholar
  52. Hiby SE, King A, Sharkey A, Loke YW (1999) Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo. Tissue Antigens 53:1–13PubMedGoogle Scholar
  53. Higgs DR, Goodbourn SE, Lamb J, Clegg JB, Weatherall DJ, Proudfoot NJ (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 306:398–400PubMedGoogle Scholar
  54. Hosomi N, Fukai K, Oiso N, Kato A, Fukui M, Ishii M (2005) No association between atopic dermatitis and the SLC9A3R1-NAT9 RUNX1 binding site polymorphism in Japanese patients. Clin Exp Dermatol 30:192–193PubMedGoogle Scholar
  55. Hsu AP, Tsai EJ, Anderson SM, Fischer RE, Malech H, Buckley RH, Puck JM (2000) Unusual X-linked SCID phenotype due to mutation of the poly-A addition signal of IL2RG (abstract 206). Am J Hum Genet 67(Suppl 2):50Google Scholar
  56. Hu J, Lutz CS, Wilusz J, Tian B (2005) Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11:1485–1493PubMedGoogle Scholar
  57. Huffmeier U, Traupe H, Burkhardt H, Schurmeier-Horst F, Lascorz J, Bohm B, Lohmann J, Stander M, Wendler J, Kelsch R, Baumann C, Kuster W, Wienker TF, Reis A (2005) Lack of evidence for genetic association to RUNX1 binding site at PSORS2 in different German psoriasis cohorts. J Invest Dermatol 124:107–110PubMedGoogle Scholar
  58. Hviid TV (2004) HLA-G genotype is associated with fetoplacental growth. Hum Immunol 65:586–593PubMedGoogle Scholar
  59. Hviid TV, Christiansen OB (2005) Linkage disequilibrium between human leukocyte antigen (HLA) class II and HLA-G–possible implications for human reproduction and autoimmune disease. Hum Immunol 66:688–699PubMedGoogle Scholar
  60. Hviid TV, Hylenius S, Rorbye C, Nielsen LG (2003) HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 55:63–79PubMedGoogle Scholar
  61. Hviid TV, Rizzo R, Christiansen OB, Melchiorri L, Lindhard A, Baricordi OR (2004) HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphisms. Immunogenetics 56:135–141PubMedGoogle Scholar
  62. Hwu WL, Yang CF, Fann CS, Chen CL, Tsai TF, Chien YH, Chiang SC, Chen CH, Hung SI, Wu JY, Chen YT (2005) Mapping of psoriasis to 17q terminus. J Med Genet 42:152–158PubMedGoogle Scholar
  63. Imanishi T, Itoh T, Suzuki Y, O’Donovan C, Fukuchi S, Koyanagi KO, Barrero RA, Tamura T, Yamaguchi-Kabata Y, Tanino M, Yura K, Miyazaki S, Ikeo K, Homma K, Kasprzyk A, Nishikawa T, Hirakawa M, Thierry-Mieg J, Thierry-Mieg D, Ashurst J, Jia L, Nakao M, Thomas MA, Mulder N, Karavidopoulou Y, Jin L, Kim S, Yasuda T, Lenhard B, Eveno E, Suzuki Y, Yamasaki C, Takeda J, Gough C, Hilton P, Fujii Y, Sakai H, Tanaka S, Amid C, Bellgard M, Bonaldo Mde F, Bono H, Bromberg SK, Brookes AJ, Bruford E, Carninci P, Chelala C, Couillault C, de Souza SJ, Debily MA, Devignes MD, Dubchak I, Endo T, Estreicher A, Eyras E, Fukami-Kobayashi K, Gopinath GR, Graudens E, Hahn Y, Han M, Han ZG, Hanada K, Hanaoka H, Harada E, Hashimoto K, Hinz U, Hirai M, Hishiki T, Hopkinson I, Imbeaud S, Inoko H, Kanapin A, Kaneko Y, Kasukawa T, Kelso J, Kersey P, Kikuno R, Kimura K, Korn B, Kuryshev V, Makalowska I, Makino T, Mano S, Mariage-Samson R, Mashima J, Matsuda H, Mewes HW, Minoshima S, Nagai K, Nagasaki H, Nagata N, Nigam R, Ogasawara O, Ohara O, Ohtsubo M, Okada N, Okido T, Oota S, Ota M, Ota T, Otsuki T, Piatier-Tonneau D, Poustka A, Ren SX, Saitou N, Sakai K, Sakamoto S, Sakate R, Schupp I, Servant F, Sherry S, Shiba R, Shimizu N, Shimoyama M, Simpson AJ, Soares B, Steward C, Suwa M, Suzuki M, Takahashi A, Tamiya G, Tanaka H, Taylor T, Terwilliger JD, Unneberg P, Veeramachaneni V, Watanabe S, Wilming L, Yasuda N, Yoo HS, Stodolsky M, Makalowski W, Go M, Nakai K, Takagi T, Kanehisa M, Sakaki Y, Quackenbush J, Okazaki Y, Hayashizaki Y, Hide W, Chakraborty R, Nishikawa K, Sugawara H, Tateno Y, Chen Z, Oishi M, Tonellato P, Apweiler R, Okubo K, Wagner L, Wiemann S, Strausberg RL, Isogai T, Auffray C, Nomura N, Gojobori T, Sugano S (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol 2:e162PubMedGoogle Scholar
  64. Itakura H, Telen MJ, Hoppe CC, White DA, Zehnder JL (2005) Characterization of a novel prothrombin variant, Prothrombin C20209T, as a modifier of thrombotic risk among African-Americans. J Thromb Haemost 3:2357–2359PubMedGoogle Scholar
  65. Itoh K, Sakakibara M, Yamasaki S, Takeuchi A, Arase H, Miyazaki M, Nakajima N, Okada M, Saito T (2002) Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol 168:541–544PubMedGoogle Scholar
  66. Jacquette A, Le Roux G, Lacombe C, Goossens M, Pissard S (2004) Compound heterozygosity for two new mutations in the beta-globin gene [codon 9 (+TA) and polyadenylation site (AATAAA→AAAAAA)] leads to thalassemia intermedia in a Tunisian patient. Hemoglobin 28:243–248PubMedGoogle Scholar
  67. Jankovic L, Efremov GD, Petkov G, Kattamis C, George E, Yang KG, Stoming TA, Huisman TH (1990) Two novel polyadenylation mutations leading to beta(+)-thalassemia. Br J Haematol 75:122–126PubMedGoogle Scholar
  68. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263:131–133PubMedGoogle Scholar
  69. Kim SJ, Martinson HG (2003) Poly(A)-dependent transcription termination: continued communication of the poly(A) signal with the polymerase is required long after extrusion in vivo. J Biol Chem 278:41691–41701PubMedGoogle Scholar
  70. Kim JW, Kim BN, Cho SC (2006) The dopamine transporter gene and the impulsivity phenotype in attention deficit hyperactivity disorder: a case-control association study in a Korean sample. J Psychiatr Res [Epub ahead of print]Google Scholar
  71. Kimberland ML, Boehm CD, Kazazian HH Jr (1995) Two novel beta-thalassemia alleles: poly A signal (AATAAA→AAAA) and -92 C→T. Hum Mutat 5:275–276PubMedGoogle Scholar
  72. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392PubMedGoogle Scholar
  73. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384PubMedGoogle Scholar
  74. Kreysing J, von Figura K, Gieselmann V (1990) Structure of the arylsulfatase A gene. Eur J Biochem 191:627–631PubMedGoogle Scholar
  75. Kuhn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678:67–84PubMedGoogle Scholar
  76. Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L, Speck N, Palis J, Keller G (2002) Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100:458–466PubMedGoogle Scholar
  77. Langley K, Turic D, Peirce TR, Mills S, Van Den Bree MB, Owen MJ, O’Donovan MC, Thapar A (2005) No support for association between the dopamine transporter (DAT1) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 139:7–10Google Scholar
  78. LeMaoult J, Le Discorde M, Rouas-Freiss N, Moreau P, Menier C, McCluskey J, Carosella ED (2003) Biology and functions of human leukocyte antigen-G in health and sickness. Tissue Antigens 62:273–284PubMedGoogle Scholar
  79. de Leon JH, Vatsis KP, Weber WW (2000) Characterization of naturally occurring and recombinant human N-acetyltransferase variants encoded by NAT1. Mol Pharmacol 58:288–299PubMedGoogle Scholar
  80. Liao G, Wang J, Guo J, Allard J, Cheng J, Ng A, Shafer S, Puech A, McPherson JD, Foernzler D, Peltz G, Usuka J (2004) In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science 306:690–695PubMedGoogle Scholar
  81. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedGoogle Scholar
  82. Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1397–1409PubMedGoogle Scholar
  83. Makalowski W, Zhang J, Boguski MS (1996) Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences. Genome Res 6:846–857PubMedGoogle Scholar
  84. Meadows CA, Warner D, Page S, Lyon E (2002) Detection of novel mutation using fluorescent hybridization probes and melting temperature analysis (abstract). J Mol Diagn 3:195Google Scholar
  85. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078PubMedGoogle Scholar
  86. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:REVIEWS0004Google Scholar
  87. Mill J, Asherson P, Craig I, D’Souza UM (2005) Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 6:3PubMedGoogle Scholar
  88. Missirlis PI, Mead CL, Butland SL, Ouellette BF, Devon RS, Leavitt BR, Holt RA (2005) Satellog: a database for the identification and prioritization of satellite repeats in disease association studies. BMC Bioinformatics 6:145PubMedGoogle Scholar
  89. Moi P, Loudianos G, Lavinha J, Murru S, Cossu P, Casu R, Oggiano L, Longinotti M, Cao A, Pirastu M (1992) Delta-thalassemia due to a mutation in an erythroid-specific binding protein sequence 3′ to the delta-globin gene. Blood 79:512–516PubMedGoogle Scholar
  90. Moore CL, Skolnik-David H, Sharp PA (1986) Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site. EMBO J 5:1929–1938PubMedGoogle Scholar
  91. Morar N, Bowcock AM, Harper JI, Cookson WO, Moffatt MF (2006) Investigation of the chromosome 17q25 PSORS2 locus in atopic dermatitis. J Invest Dermatol 126:603–606PubMedGoogle Scholar
  92. Moreira A, Wollerton M, Monks J, Proudfoot NJ (1995) Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J 14:3809–3819PubMedGoogle Scholar
  93. Morgan K, Scobie G, Kalsheker NA (1993) Point mutation in a 3′ flanking sequence of the alpha-1-antitrypsin gene associated with chronic respiratory disease occurs in a regulatory sequence. Hum Mol Genet 2:253–257PubMedGoogle Scholar
  94. Morgan K, Scobie G, Marsters P, Kalsheker NA (1997) Mutation in an alpha1-antitrypsin enhancer results in an interleukin-6 deficient acute-phase response due to loss of cooperativity between transcription factors. Biochim Biophys Acta 1362:67–76PubMedGoogle Scholar
  95. Muhlrad D, Parker R (1999) Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5:1299–1307PubMedGoogle Scholar
  96. Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I (2004) The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 14:302–308PubMedGoogle Scholar
  97. Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH Jr (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J 4:453–456PubMedGoogle Scholar
  98. Pastinen T, Hudson TJ (2004) Cis-acting regulatory variation in the human genome. Science 306:647–650PubMedGoogle Scholar
  99. Pauws E, van Kampen AH, van de Graaf SA, de Vijlder JJ, Ris-Stalpers C (2001) Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res 29:1690–1694PubMedGoogle Scholar
  100. Pickering BM, Willis AE (2005) The implications of structured 5′ untranslated regions on translation and disease. Semin Cell Dev Biol 16:39–47PubMedGoogle Scholar
  101. Pizzuti A, Argiolas A, Di Paola R, Baratta R, Rauseo A, Bozzali M, Vigneri R, Dallapiccola B, Trischitta V, Frittitta L (2002) An ATG repeat in the 3′-untranslated region of the human resistin gene is associated with a decreased risk of insulin resistance. J Clin Endocrinol Metab 87:4403–4406PubMedGoogle Scholar
  102. Plant KE, Dye MJ, Lafaille C, Proudfoot NJ (2005) Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human Ggamma-globin gene. Mol Cell Biol 25:3276–3285PubMedGoogle Scholar
  103. Pollak ES, Lam HS, Russell JE (2002) The G20210A mutation does not affect the stability of prothrombin mRNA in vivo. Blood 100:359–362PubMedGoogle Scholar
  104. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703PubMedGoogle Scholar
  105. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669PubMedGoogle Scholar
  106. Purper-Ouakil D, Wohl M, Mouren MC, Verpillat P, Ades J, Gorwood P (2005) Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr Genet 15:53–59PubMedGoogle Scholar
  107. Rousseau P, Le Discorde M, Mouillot G, Marcou C, Carosella ED, Moreau P (2003) The 14 bp deletion-insertion polymorphism in the 3′ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol 64:1005–1010PubMedGoogle Scholar
  108. Rund D, Dowling C, Najjar K, Rachmilewitz EA, Kazazian HH Jr, Oppenheim A (1992) Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites. Proc Natl Acad Sci USA 89:4324–4328PubMedGoogle Scholar
  109. Sachchithananthan M, Stasinopoulos SJ, Wilusz J, Medcalf RL (2005) The relationship between the prothrombin upstream sequence element and the G20210A polymorphism: the influence of a competitive environment for mRNA 3′-end formation. Nucleic Acids Res 33:1010–1020PubMedGoogle Scholar
  110. Sato M, Sato T, Izumo T, Amagasa T (1999) Genetic polymorphism of drug-metabolizing enzymes and susceptibility to oral cancer. Carcinogenesis 20:1927–1931PubMedGoogle Scholar
  111. Schrijver I, Lenzi TJ, Jones CD, Lay MJ, Druzin ML, Zehnder JL (2003) Prothrombin gene variants in non-Caucasians with fetal loss and intrauterine growth retardation. J Mol Diagn 5:250–253PubMedGoogle Scholar
  112. Sheets MD, Stephenson P, Wickens MP (1987) Products of in vitro cleavage and polyadenylation of simian virus 40 late pre-mRNAs. Mol Cell Biol 7:1518–1529PubMedGoogle Scholar
  113. Sheets MD, Ogg SC, Wickens MP (1990) Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res 18:5799–5805PubMedGoogle Scholar
  114. Shin HD, Kim LH, Park BL, Jung HS, Cho YM, Moon MK, Lee HK, Park KS (2003) Polymorphisms in fatty acid-binding protein-3 (FABP3) - putative association with type 2 diabetes mellitus. Hum Mutat 22:180PubMedGoogle Scholar
  115. Soo PY, Patel RK, Best S, Arya R, Thein SL (2005) Detection of prothrombin gene polymorphism at position 20209 (PT20209C/T): pilot study in a black population in the United Kingdom. Thromb Haemost 93:179–180Google Scholar
  116. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577–581PubMedGoogle Scholar
  117. Stuart P, Nair RP, Abecasis GR, Nistor I, Hiremagalore R, Chia NV, Qin ZS, Thompson RA, Jenisch S, Weichenthal M, Janiga J, Lim HW, Christophers E, Voorhees JJ, Elder JT (2006) Analysis of RUNX1 binding site and RAPTOR polymorphisms in psoriasis: no evidence for association despite adequate power and evidence for linkage. J Med Genet 43:12–17PubMedGoogle Scholar
  118. Sun M, Hurst LD, Carmichael GG, Chen J (2005) Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res 33:5533–5543PubMedGoogle Scholar
  119. Sussenbach JS, Steenbergh PH, Holthuizen P (1992) Structure and expression of the human insulin-like growth factor genes. Growth Regul 2:1–9PubMedGoogle Scholar
  120. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257:379–382PubMedGoogle Scholar
  121. Tamary H, Klinger G, Shalmon L, Attias D, Fortina P, Kobayashi M, Surrey S, Zaizov R (1997) Alpha-thalassemia caused by a 16 bp deletion in the 3′ untranslated region of the alpha 2-globin gene including the first nucleotide of the poly A signal sequence. Hemoglobin 21:121–130PubMedGoogle Scholar
  122. Tanimoto K, Hayashi S, Yoshiga K, Ichikawa T (1999) Polymorphisms of the CYP1A1 and GSTM1 gene involved in oral squamous cell carcinoma in association with a cigarette dose. Oral Oncol 35:191–196PubMedGoogle Scholar
  123. Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212PubMedGoogle Scholar
  124. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35:341–348PubMedGoogle Scholar
  125. Tripathi P, Abbas A, Naik S, Agrawal S (2004) Role of 14-bp deletion in the HLA-G gene in the maintenance of pregnancy. Tissue Antigens 64:706–710PubMedGoogle Scholar
  126. Tsai EJ, Malech HL, Kirby MR, Hsu AP, Seidel NE, Porada CD, Zanjani ED, Bodine DM, Puck JM (2002) Retroviral transduction of IL2RG into CD34(+) cells from X-linked severe combined immunodeficiency patients permits human T- and B-cell development in sheep chimeras. Blood 100:72–79PubMedGoogle Scholar
  127. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511PubMedGoogle Scholar
  128. Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM (2005) Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood 106:4176–4183Google Scholar
  129. VanNess SH, Owens MJ, Kilts CD (2005) The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 6:55PubMedGoogle Scholar
  130. Venkataraman K, Brown KM, Gilmartin GM (2005) Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 19:1315–1327PubMedGoogle Scholar
  131. Wang H, Zhang H, Jia Y, Zhang Z, Craig R, Wang X, Elbein SC (2004) Adiponectin receptor 1 gene (ADIPOR1) as a candidate for type 2 diabetes and insulin resistance. Diabetes 53:2132–2136PubMedGoogle Scholar
  132. Warshawsky I, Hren C, Sercia L, Shadrach B, Deitcher SR, Newton E, Kottke-Marchant K (2002) Detection of a novel point mutation of the prothrombin gene at position 20209. Diagn Mol Pathol 11:152–156PubMedGoogle Scholar
  133. Waye JS, Eng B, Patterson M, Reis MD, Macdonald D, Chui DH (2001) Novel beta-thalassemia mutation in a beta-thalassemia intermedia patient. Hemoglobin 25:103–105PubMedGoogle Scholar
  134. West AG, Fraser P (2005) Remote control of gene transcription. Hum Mol Genet 14(Spec No 1):R101–R111PubMedGoogle Scholar
  135. Whitelaw E, Proudfoot N (1986) Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human alpha 2 globin gene. EMBO J 5:2915–2922PubMedGoogle Scholar
  136. Wickens M, Stephenson P (1984) Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3′ end formation. Science 226:1045–1051PubMedGoogle Scholar
  137. Wilusz J, Pettine SM, Shenk T (1989) Functional analysis of point mutations in the AAUAAA motif of the SV40 late polyadenylation signal. Nucleic Acids Res 17:3899–3908PubMedGoogle Scholar
  138. Wolfenstein-Todel C, Mosesson MW (1981) Carboxy-terminal amino acid sequence of a human fibrinogen gamma-chain variant (gamma’). Biochemistry 20:6146–6149PubMedGoogle Scholar
  139. Wylenzek M, Geisen C, Stapenhorst L, Wielckens K, Klingler KR (2001) A novel point mutation in the 3′ region of the prothrombin gene at position 20221 in a Lebanese/Syrian family. Thromb Haemost 85:943–944PubMedGoogle Scholar
  140. Wylenzek C, Trubenbach J, Gohl P, Wildhardt G, Alkins S, Fausett MB, Decker J, Steinberger D (2005) Mutation screening for the prothrombin variant G20210A by melting point analysis with the Light Cycler system: atypical results, detection of the variant C20209T and possible clinical implications. Clin Lab Haematol 27:343–346PubMedGoogle Scholar
  141. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345PubMedGoogle Scholar
  142. Xiong Y, Connolly T, Futcher B, Beach D (1991) Human D-type cyclin. Cell 65:691–699PubMedGoogle Scholar
  143. Yan J, Marr TG (2005) Computational analysis of 3′-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Res 15:369–375PubMedGoogle Scholar
  144. Yasuda M, Shabbeer J, Osawa M, Desnick RJ (2003) Fabry disease: novel alpha-galactosidase A 3′-terminal mutations result in multiple transcripts due to aberrant 3′-end formation. Am J Hum Genet 73:162–173PubMedGoogle Scholar
  145. Yuregir GT, Aksoy K, Curuk MA, Dikmen N, Fei YJ, Baysal E, Huisman TH (1992) Hb H disease in a Turkish family resulting from the interaction of a deletional alpha-thalassaemia-1 and a newly discovered poly A mutation. Br J Haematol 80:527–532PubMedGoogle Scholar
  146. Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM (2003) Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 31:1375–1386PubMedGoogle Scholar
  147. Zhang MQ (1998) Statistical features of human exons and their flanking regions. Hum Mol Genet 7:919–932PubMedGoogle Scholar
  148. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445PubMedGoogle Scholar
  149. Zhernakova A, Eerligh P, Barrera P, Weseloy JZ, Huizinga TW, Roep BO, Wijmenga C, Koeleman BP (2005) CTLA4 is differentially associated with autoimmune diseases in the Dutch population. Hum Genet 118:58–66PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jian-Min Chen
    • 1
    • 2
    • 3
  • Claude Férec
    • 1
    • 2
    • 3
    • 5
  • David N. Cooper
    • 4
  1. 1.INSERM, U613BrestFrance
  2. 2.Etablissement Français du Sang—BretagneBrestFrance
  3. 3.Faculté de Médecine de Brest et des Sciences de la SantéUniversité de Bretagne OccidentaleBrestFrance
  4. 4.Institute of Medical GeneticsCardiff UniversityCardiffUK
  5. 5.Laboratoire de Génétique Moléculaire et d’HistocompatibilitéCHRU Brest, Hôpital MorvanBrestFrance

Personalised recommendations