Human Genetics

, 119:541 | Cite as

Genome-wide linkage analysis of population variation in high-density lipoprotein cholesterol

  • Stephen B. Harrap
  • Zilla Y. H. Wong
  • Katrina J. Scurrah
  • Angela Lamantia
Original Investigation


Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.


Cholesterol Family studies Linkage analyses Population genetics (human) Quantitative trait analysis 



We thank the Australian Genome Research Facility for genotyping analyses for the genome scan and Margaret Stebbing for her contribution to the Victorian Family Heart Study. This work was supported by the National Health Medical Research Council of Australia.


  1. Arya R, Duggirala R, Almasy L, Rainwater D, Mahaney M, Cole S, Dyer T, Williams K, Leach R, Hixson J, MacCluer J, O’Connell P, Stern M, Blangero J (2002) Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet 30:102–105PubMedCrossRefGoogle Scholar
  2. Bahlo M, Broman K (1999) Identification and adjustment for genotyping errors in data on sibpairs when parental genotypes are unavailable (Abstract). Am J Hum Genet 65:241Google Scholar
  3. Boden W (2000) High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol 86:19L–22LPubMedCrossRefGoogle Scholar
  4. Cawley N, Zhou J, Hill J, Abebe D, Romboz S, Yanik T, Rodriguiz R, Wetsel W, Loh Y (2004) The carboxypeptidase E knockout mouse exhibits endocrinological and behavioural deficits. Endocrinol 1445:5807–5819CrossRefGoogle Scholar
  5. Cohen J, Kiss R, Pertsemlidis A, Marcel Y, McPherson R, Hobbs H (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872PubMedCrossRefGoogle Scholar
  6. Coon H, Leppert M, Eckfeldt J, Oberman A, Myers R, Peacock J, Province M, Hopkins P, Heiss G (2001) Genome-wide linkage analysis of lipids in the Hypertension Genetic Epidemiology Network (HyperGEN) Blood Pressure Study. Arterioscler Thromb Vasc Biol 21:1969–1976PubMedCrossRefGoogle Scholar
  7. Dastani Z, Quiogue L, Plaisir C, Engert LC, Marcil M, Genest J, Pajukanya P (2006) Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol 26:392–397PubMedCrossRefGoogle Scholar
  8. Ellison RC, Zhang Y, Qureshi MM, Knox S, Arnett DK, Province MA (2004) Lifestyle determinants of high-density lipoprotein cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J 147:529–535PubMedCrossRefGoogle Scholar
  9. Fricker L, Synder S (1983) Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. J Biol Chem 258:10950–10955PubMedGoogle Scholar
  10. Gordon D, Probstfield J, Garrison R, Neaton J, Castelli W, Knoke J, Jacobs D Jr, Bangdiwala S, Tyroler H (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15PubMedGoogle Scholar
  11. Harrap S, Stebbing M, Hopper J, Hoang H, Giles G (2000) Familial patterns of covariation for cardiovascular risk factors in adults—The Victorian Family Heart Study. Am J Epidemiol 152:704–715PubMedCrossRefGoogle Scholar
  12. Harrap S, Wong Z, Stebbing M, Lamantia A, Bahlo M (2002) Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes. Physiol Genomics 8:99–105PubMedGoogle Scholar
  13. Hook V, Loh Y (1984) Carboxypeptidase B-like converting enzyme activity in secretory granules of the rat pituitary. Proc Natl Acad Sci USA 81:2776–2780PubMedCrossRefGoogle Scholar
  14. Imperatore G, Knowler W, Pettitt D, Kobes S, Fuller J, Bennett P, Hanson R (2000) A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb Vasc Biol 20:2651–2656PubMedGoogle Scholar
  15. Klos K, Kardia SL, Ferrell RE, Turner ST, Boerwinkle E, Sing CF (2001) Genome-wide linkage analysis reveals evidence of multiple regions that influence variation in plasma lipid and apolipoprotein levels associated with risk of coronary heart disease. Arterioscler Thromb Vasc Biol 21:971–978PubMedGoogle Scholar
  16. Kruglyak L, Lander E (1995) Complete multipoint sib pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454PubMedGoogle Scholar
  17. Kruglyak L, Daly M, Reeve-Daly M, Lander E (1996) Parametric and nonparametric linkage analyses: a unified approach. Am J Hum Genet 58:1347–1363PubMedGoogle Scholar
  18. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247PubMedCrossRefGoogle Scholar
  19. Lewis G, Rader D (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232PubMedCrossRefGoogle Scholar
  20. Lincoln S, Lander E (1992) Systematic detection of errors in genetic linkage analysis. Genomics 14:604–610PubMedCrossRefGoogle Scholar
  21. Mahaney M, Almasy L, Rainwater D, VandeBerg J, Cole S, Hixson J, Blangero J, MacCluer J (2003) A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican Americans. Arterioscler Thromb Vasc Biol 23:339–345PubMedCrossRefGoogle Scholar
  22. Miller M, Rhyne J, Hamlette S, Birnbaum J, Rodriguez A (2003) Genetics of HDL regulation in humans. Curr Opin Lipidol 14:273–279PubMedCrossRefGoogle Scholar
  23. Naggert J, Fricker L, Varlamov O, Nishina P, Rouille Y, Steiner D, Carroll R, Paigen B, Leiter E (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142PubMedCrossRefGoogle Scholar
  24. Ng MCY, So W-Y, Lam VKL, Cockram CS, Bell GI, Cox NJ, Chan JCN (2004) Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21-q25. Diabetes 53:2676–2683PubMedCrossRefGoogle Scholar
  25. Pajukanta P, Allayee H, Krass K, Kuraishy A, Soro A, Lilja H, Mar R, Taskinen M, Nuotio I, Laakso M, Rotter J, de Bruin T, Cantor R, Lusis A, Peltonen L (2003) Combined analysis of genome scans of Dutch and Finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet 72:903–917PubMedCrossRefGoogle Scholar
  26. Peacock J, Arnett D, Atwood L, Myers R, Coon H, Rich S, Province M, Heiss G (2001) Genome scan for quantitative trait loci linked to high-density lipoprotein cholesterol: the NHLBI Family Heart Study. Arterioscler Thromb Vasc Biol 21:1823–1828PubMedCrossRefGoogle Scholar
  27. Reed D, Nanthakumar E, North M, Bell C, Price R (2001) A genome-wide scan suggests a locus on chromosome 1q21-q23 contributes to normal variation in plasma cholesterol concentration. J Mol Med 79:262–269PubMedCrossRefGoogle Scholar
  28. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS (1999) Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 65:876–884PubMedCrossRefGoogle Scholar
  29. Rose G (1981) Strategy of prevention: lessons from cardiovascular disease. Br Med J 282:1847–1851CrossRefGoogle Scholar
  30. Sonnenberg G, Krakower G, Martin L, Olivier M, Kwitek A, Comuzzie A, Blangero J, Kissebah A (2004) Genetic determinants of obesity-related lipid traits. J Lipid Res 45:610–615PubMedCrossRefGoogle Scholar
  31. Soro A, Pajukanta P, Lilja H, Ylitalo K, Hiekkalinna T, Perola M, Cantor R, Viikari J, Taskinen M-R, Peltonen L (2002) Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1-24.2, and 20q13.11 in Finnish families. Am J Hum Genet 70:1333–1340PubMedCrossRefGoogle Scholar
  32. Wilson P, Abbott R, Castelli W (1988) High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 8:737–741PubMedGoogle Scholar
  33. Yang Q, Lai C-Q, Parnell L, Cupples L, Adiconis X, Zhu Y, Wilson P, Housman D, Shearman A, D’Agostino R, Ordovas J (2005) Genome-wide linkage analyses and candidate gene fine mapping for HDL3 cholesterol: the Framingham Study. J Lipid Res 46:1416–1425PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stephen B. Harrap
    • 1
  • Zilla Y. H. Wong
    • 1
  • Katrina J. Scurrah
    • 1
  • Angela Lamantia
    • 1
  1. 1.Department of PhysiologyThe University of MelbourneParkvilleAustralia

Personalised recommendations