Advertisement

Human Genetics

, Volume 117, Issue 6, pp 571–582 | Cite as

Reciprocal translocations: a trap for cytogenetists?

  • Roberto Ciccone
  • Roberto Giorda
  • Giuliana Gregato
  • Renzo Guerrini
  • Sabrina Giglio
  • Romeo Carrozzo
  • Maria Clara Bonaglia
  • Emanuela Priolo
  • Carmelo Laganà
  • Romano Tenconi
  • Mariano Rocchi
  • Tiziano Pramparo
  • Orsetta Zuffardi
  • Elena RossiEmail author
Original Investigation

Abstract

We report four cases of subjects with phenotypic abnormalities and mental retardation associated with apparently balanced translocations, two inherited and two de novo, which showed, by molecular analysis, a hidden complexity. All the cases have been analyzed with different molecular techniques, including array-CGH, and in two of them the translocation breakpoints have been defined at the level of base pairs via studies in somatic hybrids containing single derivative chromosomes. We demonstrated that all the translocations were in fact complex rearrangements and that an imbalance was present in three of them, thus accounting for the phenotypic abnormalities. In one case, a Prader–Willi subject, we were not able to determine the molecular cause of his phenotype. This study, while confirming previous data showing unexpected complexity in translocations, further underscores the need for molecular investigations before taking for granted an apparently simple cytogenetic interpretation.

Keywords

Reciprocal Translocation Pericentric Inversion Balance Translocation Painting Probe Translocation Breakpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to the YAC Screening Centre of San Raffaele Biomedical Science Park (Milan) for providing BAC clones. This work was supported by cofin02- and cofin03-MIUR (to O.Z.), cofin04-MIUR (to E.R.), the FIRB 2001 (to O.Z.), the Italian Telethon Foundation (GP0247Y01 to O.Z.) and the Cariplo Foundation (to E.R. and O.Z.).

References

  1. Batanian JR, Eswara MS (1998) De novo apparently balanced complex chromosome rearrangement (CCR) involving chromosomes 4, 18, and 21 in a girl with mental retardation: report and review. Am J Med Genet 78:44–51PubMedGoogle Scholar
  2. Batista DA, Pai GS, Stetten G (1994) Molecular analysis of a complex chromosomal rearrangement and a review of familial cases. Am J Med Genet 53:255–263PubMedGoogle Scholar
  3. Borg I, Squire M, Menzel C, Stout K, Morgan D, Willatt L, O’Brien PC, Ferguson-Smith MA, Ropers HH, Tommerup N, Kalscheuer VM, Sargan DR (2002) A cryptic deletion of 2q35 including part of the PAX3 gene detected by breakpoint mapping in a child with autism and a de novo 2;8 translocation. J Med Genet 39:391–399PubMedGoogle Scholar
  4. Bugge M, Bruun-Petersen G, Brondum-Nielsen K, Friedrich U, Hansen J, Jensen G, Jensen PK, Kristoffersson U, Lundsteen C, Niebuhr E, Rasmussen KR, Rasmussen K, Tommerup N (2000) Disease associated balanced chromosome rearrangements: a resource for large scale genotype–phenotype delineation in man. J Med Genet 37:858–865PubMedGoogle Scholar
  5. Christian SL, Robinson WP, Huang B, Mutirangura A, Line MR, Nakao M, Surti U, Chakravarti A, Ledbetter DH (1995) Molecular characterization of two proximal deletion breakpoint regions in both Prader–Willi and Angelman syndrome patients. Am J Hum Genet 57:40–48PubMedGoogle Scholar
  6. Conroy JM, Grebe TA, Becker LA, Tsuchiya K, Nicholls RD, Buiting K, Horsthemke B, Cassidy SB, Schwartz S (1997) Balanced translocation 46,XY,t(2;15)(q37.2;q11.2) associated with atypical Prader–Willi syndrome. Am J Hum Genet 61:388–394PubMedGoogle Scholar
  7. Dufke A, Mayrhofer H, Enders H, Kaiser P, Leipoldt M (2001) Unusual chromosomal mosaicism as a cause of mental retardation and congenital malformations in a familial reciprocal translocation carrier, t(17;22)(q24.2;q11.23). Cytogenet Cell Genet 93:168–170PubMedGoogle Scholar
  8. Dutrillaux B, Viegas-Pequignot E (1981) High resolution R- and G-banding on the same preparation. Hum Genet 57:93–95PubMedGoogle Scholar
  9. Edwards JH (1982) Chromosomal abnormalities in mendelian disorders. Lancet 2:322–323Google Scholar
  10. Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR (2003) Mutations in SOX2 cause anophthalmia. Nat Genet 33:461–463PubMedGoogle Scholar
  11. Fraccaro M, Zuffardi O, Buhler E, Schinzel A, Simoni G, Witkowski R, Bonifaci E, Caufin D, Cignacco G, Delendi N et al (1983) Deficiency, transposition, and duplication of one 15q region may be alternatively associated with Prader–Willi (or a similar) syndrome. Analysis of seven cases after varying ascertainment. Hum Genet 64:388–394PubMedGoogle Scholar
  12. Gardner McKinlay RJ, Sutherland GR (2004) Chromosome abnormalities and genetic counseling. Oxford University Press, New YorkGoogle Scholar
  13. Giglio S, Calvari V, Gregato G, Gimelli G, Camanini S, Giorda R, Ragusa A, Guerneri S, Selicorni A, Stumm M, Tonnies H, Ventura M, Zollino M, Neri G, Barber J, Wieczorek D, Rocchi M, Zuffardi O (2002) Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am J Hum Genet 71:276–285PubMedGoogle Scholar
  14. Giorda R, Cerritello A, Bonaglia MC, Bova S, Lanzi G, Repetti E, Giglio S, Baschirotto C, Pramparo T, Avolio L, Bragheri R, Maraschio P, Zuffardi O (2004) Selective disruption of muscle and brain-specific BPAG1 isoforms in a girl with a 6;15 translocation, cognitive and motor delay, and tracheo-oesophageal atresia. J Med Genet 41:e71PubMedGoogle Scholar
  15. Gole L, Crolla JA, Thomas SN, Jacobs PA, Dennis NR (2004) Characterization of breakpoints in the GABRG3 and TSPY genes in a family with a t(Y;15)(p11.2;q12). Am J Med Genet 125:177–180Google Scholar
  16. Gribble SM, Prigmore E, Burford DC, Porter KM, Ng BL, Douglas EJ, Fiegler H, Carr P, Kalaitzopoulos D, Clegg S, Sandstrom R, Temple IK, Youings SA, Thomas NS, Dennis NR, Jacobs PA, Crolla JA, Carter NP (2005) The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet 42:8–16PubMedGoogle Scholar
  17. Hodgson G, Hager JH, Volik S, Hariono S, Wernick M, Moore D, Nowak N, Albertson DG, Pinkel D, Collins C, Hanahan D, Gray JW (2001) Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat Genet 29:459–464PubMedGoogle Scholar
  18. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F (1993) Prader–Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402PubMedGoogle Scholar
  19. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951PubMedGoogle Scholar
  20. Jacobs PA, Hunt PA, Mayer M, Bart RD (1981) Duchenne muscular dystrophy (DMD) in a female with an X/autosome translocation: further evidence that the DMD locus is at Xp21. Am J Hum Genet 33:513–518PubMedGoogle Scholar
  21. Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA (1999) Prader–Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet 64:70–76PubMedGoogle Scholar
  22. Madan K, Nieuwint AW, van Bever Y (1997) Recombination in a balanced complex translocation of a mother leading to a balanced reciprocal translocation in the child. Review of 60 cases of balanced complex translocations. Hum Genet 99:806–815PubMedGoogle Scholar
  23. Nazlican H, Zeschnigk M, Claussen U, Michel S, Boehringer S, Gillessen-Kaesbach G, Buiting K, Horsthemke B (2004) Somatic mosaicism in patients with Angelman syndrome and an imprinting defect. Hum Mol Genet 13:2547–2555PubMedGoogle Scholar
  24. Page DC, Fisher EM, McGillivray B, Brown LG (1990) Additional deletion in sex-determining region of human Y chromosome resolves paradox of X,t(Y;22) female. Nature 346:279–281PubMedGoogle Scholar
  25. Patsalis PC, Evangelidou P, Charalambous S, Sismani C (2004) Fluorescence in situ hybridization characterization of apparently balanced translocation reveals cryptic complex chromosomal rearrangements with unexpected level of complexity. Eur J Hum Genet 128:647–653Google Scholar
  26. Schulze A, Hansen C, Skakkebaek NE, Brondum-Nielsen K, Ledbeter DH, Tommerup N (1996) Exclusion of SNRPN as a major determinant of Prader–Willi syndrome by a translocation breakpoint. Nat Genet 12:452–454PubMedGoogle Scholar
  27. Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R, Colleaux L, Bobrow M, Carter NP (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248PubMedGoogle Scholar
  28. Sun Y, Nicholls RD, Butler MG, Saitoh S, Hainline BE, Palmer CG (1996) Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader–Willi syndrome patient. Hum Mol Genet 5:517–524PubMedGoogle Scholar
  29. Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49:995–1013PubMedGoogle Scholar
  30. Weise A, Rittinger O, Starke H, Ziegler M, Claussen U, Liehr T (2003) De novo 9-break-event in one chromosome 21 combined with a microdeletion in 21q22.11 in a mentally retarded boy with short stature. Cytogenet Genome Res 103:14–16PubMedGoogle Scholar
  31. Wessendorf S, Fritz B, Wrobel G, Nessling M, Lampel S, Goettel D, Kuepper M, Joos S, Hopman T, Kokocinski F, Dohner H, Bentz M, Schwaenen C, Lichter P (2002) Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Lab Invest 82:47–60PubMedGoogle Scholar
  32. Wirth J, Back E, Huttenhofer A, Nothwang HG, Lich C, Gross S, Menzel C, Schinzel A, Kioschis P, Tommerup N, Ropers HH, Horsthemke B, Buiting K (2001) A translocation breakpoint cluster disrupts the newly defined 3′ end of the SNURF–SNRPN transcription unit on chromosome 15. Hum Mol Genet 10:201–210PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Roberto Ciccone
    • 1
  • Roberto Giorda
    • 2
  • Giuliana Gregato
    • 1
  • Renzo Guerrini
    • 3
  • Sabrina Giglio
    • 4
  • Romeo Carrozzo
    • 5
  • Maria Clara Bonaglia
    • 2
  • Emanuela Priolo
    • 6
  • Carmelo Laganà
    • 6
  • Romano Tenconi
    • 7
  • Mariano Rocchi
    • 8
  • Tiziano Pramparo
    • 1
  • Orsetta Zuffardi
    • 1
    • 9
  • Elena Rossi
    • 1
    Email author
  1. 1.Biologia Generale e Genetica MedicaUniversità di PaviaPaviaItaly
  2. 2.IRCSS E. MedeaBosisio PariniLeccoItaly
  3. 3.IRCSS Stella MarisUniversità di PisaPisaItaly
  4. 4.Ospedale MeyerFirenzeItaly
  5. 5.Ospedale San RaffaeleMilanoItaly
  6. 6.Azienda Ospedaliera BBMReggio CalabriaItaly
  7. 7.Genetica ClinicaUniversità di PadovaPadovaItaly
  8. 8.DAPEG Sezione di GeneticaUniversità di BariBariItaly
  9. 9.IRCSS Policlinico San MatteoPaviaItaly

Personalised recommendations