Advertisement

Human Genetics

, Volume 117, Issue 2–3, pp 143–153 | Cite as

A newly identified RET proto-oncogene polymorphism is found in a high number of endocrine tumor patients

  • Wolfgang Gartner
  • Ivelina Mineva
  • Teodora Daneva
  • Sabina Baumgartner-Parzer
  • Bruno Niederle
  • Heinrich Vierhapper
  • Michael Weissel
  • Ludwig WagnerEmail author
Original Investigation

Abstract

Multiple RET proto-oncogene transcripts, due to genomic variations and alternate splicing, have been described. To investigate endocrine tumor tissue characteristic RET proto-oncogene expression, we performed quantitative RT-PCR, Northern blot and Southern blot analyses of benign and malignant endocrine-derived tissues. We newly describe RET proto-oncogene expression in carcinoid-, gastrinoma- and insulinoma-derived tissue samples. In addition, the presence of a 3′-terminally truncated RET proto-oncogene mRNA variant in benign and malignant thyroid neoplasias, as well as in a pheochromocytoma, an ovarian carcinoma and a medullary thyroid carcinoma, is demonstrated. Southern blot analysis revealed no evidence of gross RET proto-oncogene rearrangements or deletions. As the underlying cause for a bi-allelic TaqI restriction fragment length polymorphism (RFLP), a C (allele 1)/T (allele 2) transition within intron 19, was characterized. This polymorphism is close to a recently described polyadenylation site and lies within a binding site for the nucleic acid binding protein Pbx-1. Screening of healthy subjects and of patients suffering from various endocrine malignancies revealed exclusively allele 1 homozygous and allele 1/allele 2 heterozygous genotypes. Heterozygous genotypes were found in a significantly higher percentage in samples derived from endocrine tumor patients when compared with those from healthy control subjects. Homozygosity for allele 2 was found exclusively in somatic DNA derived from endocrine tumors with high malignant potential. Analysis of DNA derived from varying regions within individual anaplastic thyroid carcinomas revealed an allele 1/allele 2 switch of the RFLP banding pattern, indicating loss of heterozygosity at the RET proto-oncogene locus. In conclusion, our data demonstrate presence of a 5′-terminal RET proto-oncogene transcript in endocrine tissues and reveal a bi-allelic RET proto-oncogene polymorphism. A heterozygous genotype for this polymorphism is found in a considerable number of endocrine tumor patients.

Keywords

Restriction Fragment Length Polymorphism Medullary Thyroid Carcinoma Endocrine Tumor Anaplastic Thyroid Carcinoma Endocrine Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We want to thank R. Lang and Dr. C. Schwarz for technical support.

References

  1. Airaksinen MS, Titievsky A, Saarma M (1999) GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13:313–325Google Scholar
  2. Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA (2003) RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol 195:168–186Google Scholar
  3. Arlt DH, Baur B, Wagner B, Hoppner W (2000) A novel type of mutation in the cysteine rich domain of the RET receptor causes ligand independent activation. Oncogene 19:3445–3448Google Scholar
  4. Birnstiel ML, Busslinger M, Strub K (1985) Transcription termination and 3′ processing: the end is in site. Cell 41:349–359Google Scholar
  5. Bongarzone I, Butti MG, Coronelli S, Borrello MG, Santoro M, Mondellini P, Pilotti S, Fusco A, Della Porta G, Pierotti MA (1994) Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54:2979–2985Google Scholar
  6. Bunone G, Uggeri M, Mondellini P, Pierotti MA, Bongarzone I (2000) RET receptor expression in thyroid follicular epithelial cell-derived tumors. Cancer Res 60:2845–2849Google Scholar
  7. Drosten M, Putzer BM (2003) Gene therapeutic approaches for medullary thyroid carcinoma treatment. J Mol Med 81:411–419Google Scholar
  8. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793Google Scholar
  9. Eng C (1999) RET proto-oncogene in the development of human cancer. J Clin Oncol 17:380–393Google Scholar
  10. Gimm O, Neuberg DS, Marsh DJ, Dahia PL, Hoang-Vu C, Raue F, Hinze R, Dralle H, Eng C (1999) Over-representation of a germline RET sequence variant in patients with sporadic medullary thyroid carcinoma and somatic RET codon 918 mutation. Oncogene 18:1369–1373Google Scholar
  11. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563Google Scholar
  12. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G et al (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376Google Scholar
  13. Iwashita T, Kato M, Murakami H, Asai N, Ishiguro Y, Ito S, Iwata Y, Kawai K, Asai M, Kurokawa K, Kajita H, Takahashi M (1999) Biological and biochemical properties of Ret with kinase domain mutations identified in multiple endocrine neoplasia type 2B and familial medullary thyroid carcinoma. Oncogene 18:3919–3922Google Scholar
  14. Jhiang SM (2000) The RET proto-oncogene in human cancers. Oncogene 19:5590–5597Google Scholar
  15. Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y, Cleary ML (2002) Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet 30:430–435Google Scholar
  16. Knoepfler PS, Lu Q, Kamps MP (1996) Pbx-1 Hox heterodimers bind DNA on inseparable half-sites that permit intrinsic DNA binding specificity of the Hox partner at nucleotides 3′ to a TAAT motif. Nucleic Acids Res 24:2288–2294Google Scholar
  17. Kwok JB, Gardner E, Warner JP, Ponder BA, Mulligan LM (1993) Structural analysis of the human ret proto-oncogene using exon trapping. Oncogene 8:2575–2582Google Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408Google Scholar
  19. Lorenzo MJ, Eng C, Mulligan LM, Stonehouse TJ, Healey CS, Ponder BA, Smith DP (1995) Multiple mRNA isoforms of the human RET proto-oncogene generated by alternate splicing. Oncogene 10:1377–1383Google Scholar
  20. Myers SM, Eng C, Ponder BA, Mulligan LM (1995) Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene 11:2039–2045Google Scholar
  21. Nakamura T, Ishizaka Y, Nagao M, Hara M, Ishikawa T (1994) Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J Pathol 172:255–260Google Scholar
  22. Rebelo S, Domingues R, Catarino AL, Mendonca E, Santos JR, Sobrinho L, Bugalho MJ (2003) Immunostaining and RT-PCR: different approaches to search for RET rearrangements in patients with papillary thyroid carcinoma. Int J Oncol 23:1025–1032Google Scholar
  23. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378Google Scholar
  24. Santoro M, Rosati R, Grieco M, Berlingieri MT, D’Amato GL, de Franciscis V, Fusco A (1990) The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5:1595–1598Google Scholar
  25. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH et al (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267:381–383Google Scholar
  26. Santoro M, Melillo RM, Carlomagno F, Visconti R, De Vita G, Salvatore G, Fusco A, Vecchio G (1999) Different mutations of the RET gene cause different human tumoral diseases. Biochimie 81:397–402Google Scholar
  27. Schnabel CA, Godin RE, Cleary ML (2003) Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254:262–276Google Scholar
  28. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383Google Scholar
  29. Tahira T, Ishizaka Y, Sugimura T, Nagao M (1988) Expression of proto-ret mRNA in embryonic and adult rat tissues. Biochem Biophys Res Commun 153:1290–1295Google Scholar
  30. Tahira T, Ishizaka Y, Itoh F, Sugimura T, Nagao M (1990a) Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 5:97–102Google Scholar
  31. Tahira T, Shiraishi M, Ishizaka Y, Ikeda I, Sakai R, Sugimura T, Nagao M (1990b) A TaqI RFLP in the human ret proto-oncogene. Nucleic Acids Res 18:7472Google Scholar
  32. Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578Google Scholar
  33. Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8:345–354Google Scholar
  34. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumae U (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789Google Scholar
  35. Wahle E, Keller W (1992) The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61:419–440Google Scholar
  36. Ward LS, Brenta G, Medvedovic M, Fagin JA (1998) Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab 83:525–530Google Scholar
  37. Zedenius J, Wallin G, Svensson A, Grimelius L, Hoog A, Lundell G, Backdahl M, Larsson C (1995) Allelotyping of follicular thyroid tumors. Hum Genet 96:27–32Google Scholar
  38. Zedenius J, Wallin G, Svensson A, Bovee J, Hoog A, Backdahl M, Larsson C (1996) Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet 97:299–303Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Wolfgang Gartner
    • 1
  • Ivelina Mineva
    • 1
  • Teodora Daneva
    • 1
  • Sabina Baumgartner-Parzer
    • 1
  • Bruno Niederle
    • 2
  • Heinrich Vierhapper
    • 1
  • Michael Weissel
    • 1
  • Ludwig Wagner
    • 1
    Email author
  1. 1.Department of Internal Medicine III, General Hospital ViennaVienna Medical UniversityViennaAustria
  2. 2.Department of SurgeryVienna Medical UniversityViennaAustria

Personalised recommendations