Human Genetics

, Volume 119, Issue 1–2, pp 103–112 | Cite as

Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees

  • Justyna M. Szamalek
  • David N. Cooper
  • Werner Schempp
  • Peter Minich
  • Matthias Kohn
  • Josef Hoegel
  • Violaine Goidts
  • Horst Hameister
  • Hildegard Kehrer-SawatzkiEmail author
Original Investigation


A combination of inter- and intra-species genome comparisons is required to identify and classify the full spectrum of genetic changes, both subtle and gross, that have accompanied the evolutionary divergence of humans and other primates. In this study, gene order comparisons of 11,518 human and chimpanzee orthologous gene pairs were performed to detect regions of inverted gene order that are potentially indicative of small-scale rearrangements such as inversions. By these means, a total of 71 potential micro-rearrangements were detected, nine of which were considered to represent micro-inversions encompassing more than three genes. These putative inversions were then investigated by FISH and/or PCR analyses and the authenticity of five of the nine inversions, ranging in size from ~800 kb to ~4.4 Mb, was confirmed. These inversions mapped to 1p13.2–13.3, 7p22.1, 7p13–14.1, 18p11.21–11.22 and 19q13.12 and encompass 50, 14, 16, 7 and 16 known genes, respectively. Intriguingly, four of the confirmed inversions turned out to be polymorphic: three were polymorphic in the chimpanzee and one in humans. It is concluded that micro-inversions make a significant contribution to genomic variability in both humans and chimpanzees and inversion polymorphisms may be more frequent than previously realized.


Segmental Duplication Pericentric Inversion Breakpoint Region Chimpanzee Genome Inversion Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Antje Kollak and Helene Spöri for technical assistance. This research was funded by the Deutsche Forschungsgemeinschaft (DFG KE 724/2-1).

Supplementary material

439_2005_117_MOESM1_ESM.pdf (3 mb)
Supplementary material


  1. Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X (2003) Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum Mol Genet 12:2201–2208CrossRefPubMedGoogle Scholar
  2. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE (2002) Recent segmental duplications in the human genome. Science 297:1003–1007CrossRefPubMedGoogle Scholar
  3. Britten RJ (2002) Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc Natl Acad Sci USA 99:13633–13635CrossRefPubMedGoogle Scholar
  4. Chen FC, Li WH (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68:444–456CrossRefPubMedGoogle Scholar
  5. Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Paabo S, Rocchi M, Eichler EE (2005) Genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437:88–93CrossRefPubMedGoogle Scholar
  6. Cosseddu GM, Perez-Enciso M, Fellous M, Vaiman D (2004) Interspecific chromosome-wide transcription profiles reveal the existence of mammalian-specific and species-specific chromosome domains. J Mol Evol 59:317–328CrossRefPubMedGoogle Scholar
  7. Cruts M, Rademakers R, Gijselinck I, van der Zee J, Dermaut B, de Pooter T, de Rijk P, Del-Favero J, van Broeckhoven C (2005) Genomic architecture of human 17q21 linked to frontotemporal dementia uncovers a highly homologous family of low-copy repeats in the tau region. Hum Mol Genet 14:1753–1762CrossRefPubMedGoogle Scholar
  8. Dennehey BK, Gutches DG, McConkey EH, Krauter KS (2004) Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 83:493–501CrossRefPubMedGoogle Scholar
  9. Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251–314CrossRefPubMedGoogle Scholar
  10. Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R, Doxiadis GM, Bontrop RE, Paabo S (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343CrossRefPubMedGoogle Scholar
  11. Fan Y, Linardopoulou E, Friedman C, Williams E, Trask BJ (2002) Genomic structure and evolution of the ancestral chromosome fusion site in 2q13–2q14.1 and paralogous regions on other human chromosomes. Genome Res 12:1651–1662CrossRefPubMedGoogle Scholar
  12. Fischer A, Gilad Y, Man O, Paabo S (2004) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436CrossRefPubMedGoogle Scholar
  13. Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, Brenton M, Hink R, Burgers S, Hernandez-Boussard T, Karimpour-Fard A, Glueck D, McGavran L, Berry R, Pollack J, Sikela JM (2004) Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol 2:E207CrossRefPubMedGoogle Scholar
  14. Frazer KA, Chen X, Hinds DA, Pant PV, Patil N, Cox DR (2003) Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates. Genome Res 13:341–346CrossRefPubMedGoogle Scholar
  15. Fujiyama A, Watanabe H, Toyoda A, Taylor TD, Itoh T, Tsai SF, Park HS, Yaspo ML, Lehrach H, Chen Z, Fu G, Saitou N, Osoegawa K, de Jong PJ, Suto Y, Hattori M, Sakaki Y (2002) Construction and analysis of a human–chimpanzee comparative clone map. Science 295:131–134CrossRefPubMedGoogle Scholar
  16. Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O (2001) Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68:874–883CrossRefPubMedGoogle Scholar
  17. Giglio S, Calvari V, Gregato G, Gimelli G, Camanini S, Giorda R, Ragusa A, Guerneri S, Selicorni A, Stumm M, Tonnies H, Ventura M, Zollino M, Neri G, Barber J, Wieczorek D, Rocchi M, Zuffardi O (2002) Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8) (p16; p23) translocation. Am J Hum Genet 71:276–285CrossRefPubMedGoogle Scholar
  18. Gimelli G, Pujana MA, Patricelli MG, Russo S, Giardino D, Larizza L, Cheung J, Armengol L, Schinzel A, Estivill X, Zuffardi O (2003) Genomic inversions of human chromosome 15q11–q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum Mol Genet 12:849–858CrossRefPubMedGoogle Scholar
  19. Goidts V, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2004) Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum Genet 115:116–122CrossRefPubMedGoogle Scholar
  20. Goidts V, Szamalek JM, de Jong PJ, Cooper DN, Chuzhanova N, Hameister H, Kehrer-Sawatzki H (2005a) Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Res 15:1232–1242CrossRefGoogle Scholar
  21. Goidts V, Armengol L, Schempp W, Conroy J, Nowak N, Müller S, Cooper DN, Estivill X, Enard W, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2006) Identification of large-scale human-specific copy number variations by inter-species array comparative genomic hybridization (Hum Genet Submitted for publication)Google Scholar
  22. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951CrossRefPubMedGoogle Scholar
  23. IJdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88:9051–9055PubMedCrossRefGoogle Scholar
  24. Kaessmann H, Wiebe V, Weiss G, Paabo S (2001) Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nat Genet 27:155–156CrossRefPubMedGoogle Scholar
  25. Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, Melsopp C, Hammond M, Rocca-Serra P, Cox T, Birney E (2004) EnsMart: a generic system for fast and flexible access to biological data. Genome Res 14:160–169CrossRefPubMedGoogle Scholar
  26. Kehrer-Sawatzki H, Schreiner B, Tanzer S, Platzer M, Muller S, Hameister H (2002) Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71:375–388CrossRefPubMedGoogle Scholar
  27. Kehrer-Sawatzki H, Sandig C, Chuzhanova N, Goidts V, Szamalek JM, Tanzer S, Muller S, Platzer M, Cooper DN, Hameister H (2005a) Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat 25:45–55CrossRefGoogle Scholar
  28. Kehrer-Sawatzki H, Sandig CA, Goidts V, Hameister H (2005b) Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet Genome Res 108:91–97CrossRefGoogle Scholar
  29. Kehrer-Sawatzki H, Szamalek JM, Tanzer S, Platzer M, Hameister H (2005c) Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 85:542–550CrossRefGoogle Scholar
  30. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedCrossRefGoogle Scholar
  31. Koop BF, Tagle DA, Goodman M, Slightom JL (1989) A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol Biol Evol 6:580–612PubMedGoogle Scholar
  32. Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE (2003a) Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res 13:347–357CrossRefGoogle Scholar
  33. Locke DP, Archidiacono N, Misceo D, Cardone MF, Deschamps S, Roe B, Rocchi M, Eichler EE (2003b) Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4:R50CrossRefGoogle Scholar
  34. Martin J, Han C, Gordon LA, Terry A, Prabhakar S, She X, Xie G, Hellsten U, Chan YM, Altherr M, Couronne O, Aerts A, Bajorek E, Black S, Blumer H, Branscomb E, Brown NC, Bruno WJ, Buckingham JM, Callen DF, Campbell CS, Campbell ML, Campbell EW, Caoile C, Challacombe JF, Chasteen LA, Chertkov O, Chi HC, Christensen M, Clark LM, Cohn JD, Denys M, Detter JC, Dickson M, Dimitrijevic-Bussod M, Escobar J, Fawcett JJ, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Goodwin LA, Grady DL, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Hildebrand CE, Huang W, Israni S, Jett J, Jewett PB, Kadner K, Kimball H, Kobayashi A, Krawczyk MC, Leyba T, Longmire JL, Lopez F, Lou Y, Lowry S, Ludeman T, Manohar CF, Mark GA, McMurray KL, Meincke LJ, Morgan J, Moyzis RK, Mundt MO, Munk AC, Nandkeshwar RD, Pitluck S, Pollard M, Predki P, Parson-Quintana B, Ramirez L, Rash S, Retterer J, Ricke DO, Robinson DL, Rodriguez A, Salamov A, Saunders EH, Scott D, Shough T, Stallings RL, Stalvey M, Sutherland RD, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Torney DC, Tran-Gyamfi M, Tsai M, Ulanovsky LE, Ustaszewska A, Vo N, White PS, Williams AL, Wills PL, Wu JR, Wu K, Yang J, Dejong P, Bruce D, Doggett NA, Deaven L, Schmutz J, Grimwood J, Richardson P, Rokhsar DS, Eichler EE, Gilna P, Lucas SM, Myers RM, Rubin EM, Pennacchio LA (2004) The sequence and analysis of duplication-rich human chromosome 16. Nature 432:988–994CrossRefPubMedGoogle Scholar
  35. Marzella R, Viggiano L, Miolla V, Storlazzi CT, Ricco A, Gentile E, Roberto R, Surace C, Fratello A, Mancini M, Archidiacono N, Rocchi M (2000) Molecular cytogenetic resources for chromosome 4 and comparative analysis of phylogenetic chromosome IV in great apes. Genomics 63:307–313CrossRefPubMedGoogle Scholar
  36. McLellan RA, Oscarson M, Alexandrie AK, Seidegard J, Evans DA, Rannug A, Ingelman-Sundberg M (1997) Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol 52:958–965PubMedGoogle Scholar
  37. Muller S, Wienberg J (2001) "Bar-coding" primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109:85–94CrossRefPubMedGoogle Scholar
  38. Muller S, Stanyon R, O'Brien PC, Ferguson-Smith MA, Plesker R, Wienberg J (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108:393–400CrossRefPubMedGoogle Scholar
  39. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617CrossRefPubMedGoogle Scholar
  40. Nickerson E, Nelson DL (1998) Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372CrossRefPubMedGoogle Scholar
  41. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky J, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170 (Epub 2005 May 3)Google Scholar
  42. Osborne LR, Li M, Pober B, Chitayat D, Bodurtha J, Mandel A, Costa T, Grebe T, Cox S, Tsui LC, Scherer SW (2001) A 1.5 million-base pair inversion polymorphism in families with Williams–Beuren syndrome. Nat Genet 29:321–325CrossRefPubMedGoogle Scholar
  43. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100:7672–7677CrossRefPubMedGoogle Scholar
  44. Scherer SW, Gripp KW, Lucena J, Nicholson L, Bonnefont J-P, Pérez-Jurado LA, Osborne LR (2005) Observation of a parental inversion variant in a rare Williams–Beuren syndrome family with two affected children. Hum Genet 117:383–388CrossRefPubMedGoogle Scholar
  45. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528CrossRefPubMedGoogle Scholar
  46. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77:78–88CrossRefPubMedGoogle Scholar
  47. She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton G, Halpern AL, Eichler EE (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431:927–930CrossRefPubMedGoogle Scholar
  48. Shimada MK, Kim CG, Kitano T, Ferrell RE, Kohara Y, Saitou N (2005) Nucleotide sequence comparison of a chromosome rearrangement on human chromosome 12 and the corresponding ape chromosomes. Cytogenet Genome Res 108:83–90CrossRefPubMedGoogle Scholar
  49. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K (2005) A common inversion under selection in Europeans. Nat Genet 37:129–137CrossRefPubMedGoogle Scholar
  50. Szamalek JM, Goidts V, Chuzhanova N, Hameister H, Cooper DN, Kehrer-Sawatzki H (2005) Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Hum Genet 117:168–176CrossRefPubMedGoogle Scholar
  51. The Chimpanzee Sequencing, Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefPubMedGoogle Scholar
  52. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff JA, Doremieux O (2003a) PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 31:334–341CrossRefGoogle Scholar
  53. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003b) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141CrossRefGoogle Scholar
  54. Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732CrossRefPubMedGoogle Scholar
  55. Visser R, Shimokawa O, Harada N, Kinoshita A, Ohta T, Niikawa N, Matsumoto N (2005) Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet 76:52–67CrossRefPubMedGoogle Scholar
  56. Yu N, Jensen-Seaman MI, Chemnick L, Kidd JR, Deinard AS, Ryder O, Kidd KK, Li WH (2003) Low nucleotide diversity in chimpanzees and bonobos. Genetics 164:1511–1518PubMedGoogle Scholar
  57. Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530PubMedCrossRefGoogle Scholar
  58. Yunis JJ, Sawyer JR, Dunham K (1980) The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee. Science 208:1145–1148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Justyna M. Szamalek
    • 1
  • David N. Cooper
    • 2
  • Werner Schempp
    • 3
  • Peter Minich
    • 1
  • Matthias Kohn
    • 1
  • Josef Hoegel
    • 1
  • Violaine Goidts
    • 1
  • Horst Hameister
    • 1
  • Hildegard Kehrer-Sawatzki
    • 1
    Email author
  1. 1.Department of Human GeneticsUniversity of UlmUlmGermany
  2. 2.Institute of Medical GeneticsCardiff UniversityCardiffUK
  3. 3.Institute of Human Genetics and AnthropologyUniversity of FreiburgFreiburgGermany

Personalised recommendations