Human Genetics

, Volume 118, Issue 1, pp 29–34

Targeted disruption of mouse Coch provides functional evidence that DFNA9 hearing loss is not a COCH haploinsufficiency disorder

  • Tomoko Makishima
  • Clara I. Rodriguez
  • Nahid G. Robertson
  • Cynthia C. Morton
  • Colin L. Stewart
  • Andrew J. Griffith
Original Investigation


Dominant progressive hearing loss and vestibular dysfunction DFNA9 is caused by mutations of the human COCH gene. COCH encodes cochlin, a highly abundant secreted protein of unknown function in the inner ear. Cochlin has an N-terminal LCCL domain followed by two vWA domains, and all known DFNA9 mutations are either missense substitutions or an amino acid deletion in the LCCL domain. Here, we have characterized the auditory phenotype associated with a genomic deletion of mouse Coch downstream of the LCCL domain. Homozygous Coch−/− mice express no detectable cochlin in the inner ear. Auditory brainstem responses to click and pure-tone stimuli (8, 16, 32 kHz) were indistinguishable among wild type and homozygous Coch−/− mice. A Coch-LacZΔneo reporter allele detected Coch mRNA expression in nonsensory epithelial and stromal regions of the cochlea and vestibular labyrinth. These data provide functional evidence that DFNA9 is probably not caused by COCH haploinsufficiency, but via a dominant negative or gain-of-function effect, in nonsensory regions of the inner ear.


COCH Cochlin DFNA9 Deafness Hearing loss 


  1. Bom SJ, Kemperman MH, De Kok YJ, Huygen PL, Verhagen WI, Cremers FP, Cremers CW (1999) Progressive cochleovestibular impairment caused by a point mutation in the COCH gene at DFNA9. Laryngoscope 109:1525–1530CrossRefPubMedGoogle Scholar
  2. Colombatti A, Bonaldo P (1991) The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77:2305–2315PubMedGoogle Scholar
  3. Colombatti A, Bonaldo P, Doliana R (1993) Type A modules: interacting domains found in several nonfibrillar collagens and in other extracellular matrix proteins. Matrix 13:297–306PubMedGoogle Scholar
  4. de Kok YJ, Bom SJ, Brunt TM, Kemperman MH, van Beusekom E, van der Velde-Visser SD, Robertson NG, Morton CC, Huygen PL, Verhagen WI, Brunner HG, Cremers CW, Cremers FP (1999) A Pro51Ser mutation in the COCH gene is associated with late onset autosomal dominant progressive sensorineural hearing loss with vestibular defects. Hum Mol Genet 8:361–366CrossRefPubMedGoogle Scholar
  5. Eavey RD, Manolis EN, Lubianca J, Merchant S, Seidman JG, Seidman C (2000) Mutations in COCH (formerly Coch5b2) cause DFNA9. Adv Otorhinolaryngol 56:101–102CrossRefPubMedGoogle Scholar
  6. Fransen E, Verstreken M, Verhagen WI, Wuyts FL, Huygen PL, D’Haese P, Robertson NG, Morton CC, McGuirt WT, Smith RJ, Declau F, Van de Heyning PH, Van Camp G (1999) High prevalence of symptoms of Meniere’s disease in three families with a mutation in the COCH gene. Hum Mol Genet 8:1425–1429CrossRefPubMedGoogle Scholar
  7. Fransen E, Verstreken M, Bom SJ, Lemaire F, Kemperman MH, De Kok YJ, Wuyts FL, Verhagen WI, Huygen PL, McGuirt WT, Smith RJ, Van Maldergem LV, Declau F, Cremers CW, Van De Heyning PH, Cremers FP, Van Camp G (2001) A common ancestor for COCH related cochleovestibular (DFNA9) patients in Belgium and The Netherlands bearing the P51S mutation. J Med Genet 38:61–65CrossRefPubMedGoogle Scholar
  8. Grabski R, Szul T, Sasaki T, Timpl R, Mayne R, Hicks B, Sztul E (2003) Mutations in COCH that result in non-syndromic autosomal dominant deafness (DFNA9) affect matrix deposition of cochlin. Hum Genet 113:406–416PubMedCrossRefGoogle Scholar
  9. Griffith AJ, Szymko YM, Kaneshige M, Quinonez RE, Kaneshige K, Heintz KA, Mastroianni MA, Kelley MW, Cheng SY (2002) Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. J Assoc Res Otolaryngol 3:279–288PubMedCrossRefGoogle Scholar
  10. Ikezono T, Omori A, Ichinose S, Pawankar R, Watanabe A, Yagi T (2001) Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochim Biophys Acta 1535:258–265PubMedGoogle Scholar
  11. Ikezono T, Shindo S, Li L, Omori A, Ichinose S, Watanabe A, Kobayashi T, Pawankar R, Yagi T (2004) Identification of a novel Cochlin isoform in the perilymph: insights to Cochlin function and the pathogenesis of DFNA9. Biochem Biophys Res Commun 314:440–446CrossRefPubMedGoogle Scholar
  12. Kamarinos M, McGill J, Lynch M, Dahl H (2001) Identification of a novel COCH mutation, I109N, highlights the similar clinical features observed in DFNA9 families. Hum Mutat 17:351PubMedCrossRefGoogle Scholar
  13. Khetarpal U (2000) DFNA9 is a progressive audiovestibular dysfunction with a microfibrillar deposit in the inner ear. Laryngoscope 110:1379–1384CrossRefPubMedGoogle Scholar
  14. Liepinsh E, Trexler M, Kaikkonen A, Weigelt J, Banyai L, Patthy L, Otting G (2001) NMR structure of the LCCL domain and implications for DFNA9 deafness disorder. EMBO J 20:5347–5353CrossRefPubMedGoogle Scholar
  15. Merchant SN, Linthicum FH, Nadol JB Jr (2000) Histopathology of the inner ear in DFNA9. Adv Otorhinolaryngol 56:212–217CrossRefPubMedGoogle Scholar
  16. Nagy I, Horvath M, Trexler M, Repassy G, Patthy L (2004) A novel COCH mutation, V104del, impairs folding of the LCCL domain of cochlin and causes progressive hearing loss. J Med Genet 41:E9PubMedCrossRefGoogle Scholar
  17. Robertson NG, Lu L, Heller S, Merchant SN, Eavey RD, McKenna M, Nadol JB Jr, Miyamoto RT, Linthicum FH Jr, Lubianca Neto JF, Hudspeth AJ, Seidman CE, Morton CC, Seidman JG (1998) Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 20:299–303CrossRefPubMedGoogle Scholar
  18. Robertson NG, Resendes BL, Lin JS, Lee C, Aster JC, Adams JC, Morton CC (2001) Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum Mol Genet 10:2493–2500CrossRefPubMedGoogle Scholar
  19. Robertson NG, Hamaker SA, Patriub V, Aster JC, Morton CC (2003) Subcellular localisation, secretion, and post-translational processing of normal cochlin, and of mutants causing the sensorineural deafness and vestibular disorder, DFNA9. J Med Genet 40:479–486CrossRefPubMedGoogle Scholar
  20. Rodriguez CI, Cheng JG, Liu L, Stewart CL (2004) Cochlin, a secreted von Willebrand factor type a domain-containing factor, is regulated by leukemia inhibitory factor in the uterus at the time of embryo implantation. Endocrinology 145:1410–1418PubMedCrossRefGoogle Scholar
  21. Szymko-Bennett YM, Kurima K, Olsen B, Seegmiller R, Griffith AJ (2003) Auditory function associated with Col11a1 haploinsufficiency in chondrodysplasia (cho) mice. Hear Res 175:178–182CrossRefPubMedGoogle Scholar
  22. Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW Jr, Gewalt SL (1999) Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109:1661–1668CrossRefPubMedGoogle Scholar
  23. Trexler M, Banyai L, Patthy L (2000) The LCCL module. Eur J Biochem 267:5751–5757CrossRefPubMedGoogle Scholar
  24. Usami S, Takahashi K, Yuge I, Ohtsuka A, Namba A, Abe S, Fransen E, Patthy L, Otting G, Van Camp G (2003) Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere’s disease. Eur J Hum Genet 11:744–748CrossRefPubMedGoogle Scholar
  25. Verhagen WI, Bom SJ, Huygen PL, Fransen E, Van Camp G, Cremers CW (2000) Familial progressive vestibulocochlear dysfunction caused by a COCH mutation (DFNA9). Arch Neurol 57:1045–1047CrossRefPubMedGoogle Scholar
  26. Verstreken M, Declau F, Wuyts FL, D’Haese P, Van Camp G, Fransen E, Van den Hauwe L, Buyle S, Smets RE, Feenstra L, Van der Stappen A, Van de Heyning PH (2001) Hereditary otovestibular dysfunction and Meniere’s disease in a large Belgian family is caused by a missense mutation in the COCH gene. Otol Neurotol 22:874–881CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Tomoko Makishima
    • 1
  • Clara I. Rodriguez
    • 2
  • Nahid G. Robertson
    • 3
  • Cynthia C. Morton
    • 3
  • Colin L. Stewart
    • 2
  • Andrew J. Griffith
    • 1
    • 4
  1. 1.Section on Gene Structure and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthRockvilleUSA
  2. 2.Cancer and Developmental Biology LaboratoryNational Cancer Institute, National Institutes of HealthFrederickUSA
  3. 3.Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthRockvilleUSA

Personalised recommendations