Human Genetics

, Volume 116, Issue 3, pp 133–145 | Cite as

Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes

  • Michael J. Riedel
  • Diana C. Steckley
  • Peter E. Light
Review Article


The ATP-sensitive potassium (KATP) channel couples membrane excitability to cellular metabolism and is a critical mediator in the process of glucose-stimulated insulin secretion. Increasing numbers of KATP channel polymorphisms are being described and linked to altered insulin secretion indicating that genes encoding this ion channel could be susceptibility markers for type-2 diabetes. Genetic variation of KATP channels may result in altered β-cell electrical activity, glucose homeostasis, and increased susceptibility to type-2 diabetes. Of particular interest is the Kir6.2 E23K polymorphism, which is linked to increased susceptibility to type-2 diabetes in Caucasian populations and may also be associated with weight gain and obesity, both of which are major diabetes risk factors. This association highlights the potential contribution of both genetic and environmental factors to the development and progression of type-2 diabetes. In addition, the common occurrence of the E23K polymorphism in Caucasian populations may have conferred an evolutionary advantage to our ancestors. This review will summarize the current status of the association of KATP channel polymorphisms with type-2 diabetes, focusing on the possible mechanisms by which these polymorphisms alter glucose homeostasis and offering insights into possible evolutionary pressures that may have contributed to the high prevalence of KATP channel polymorphisms in the Caucasian population.

KATP channel Type-2 diabetes Glucose homeostasis E23K polymorphism Evolution Caucasian population 


  1. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135CrossRefPubMedGoogle Scholar
  2. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, III, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426PubMedGoogle Scholar
  3. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245PubMedGoogle Scholar
  4. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80CrossRefPubMedGoogle Scholar
  5. Ashcroft FM (2000) The Yin and Yang of the K(ATP) channel. J Physiol (Lond) 528:405CrossRefGoogle Scholar
  6. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143CrossRefPubMedGoogle Scholar
  7. Babenko AP, Gonzalez G, Bryan J (2000) Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers. J Biol Chem 275:717–720Google Scholar
  8. Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93PubMedGoogle Scholar
  9. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20CrossRefPubMedGoogle Scholar
  10. Beck-Nielsen H, Vaag A, Poulsen P, Gaster M (2003) Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects–experiences from relatives and twin studies. Best Pract Res Clin Endocrinol Metab 17:445–467CrossRefPubMedGoogle Scholar
  11. Bergeron R, Russell RR, III, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938-E944PubMedGoogle Scholar
  12. Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 438:428–436CrossRefPubMedGoogle Scholar
  13. Branstrom R, Corkey BE, Berggren PO, Larsson O (1997) Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem 272:17390–17394CrossRefPubMedGoogle Scholar
  14. Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998) Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400CrossRefPubMedGoogle Scholar
  15. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311CrossRefPubMedGoogle Scholar
  16. Chakravarthy MV, Booth FW (2004) Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 96:3–10CrossRefPubMedGoogle Scholar
  17. Charles MA, Eschwege E, Thibult N, Claude JR, Warnet JM, Rosselin GE, Girard J, Balkau B (1997) The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40:1101–1106CrossRefPubMedGoogle Scholar
  18. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838CrossRefPubMedGoogle Scholar
  19. Clement L, Cruciani-Guglielmacci C, Magnan C, Vincent M, Douared L, Orosco M, Assimacopoulos-Jeannet F, Penicaud L, Ktorza A (2002) Intracerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch 445:375–380CrossRefPubMedGoogle Scholar
  20. Cook DL, Satin LS, Ashford ML, Hales CN (1988) ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. Diabetes 37:495–498Google Scholar
  21. Cordain L, Gotshall RW, Eaton SB, Eaton SB III (1998) Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med 19:328–335PubMedGoogle Scholar
  22. Corkey BE (1988) Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol 166:55–70PubMedGoogle Scholar
  23. Corkey BE, Deeney JT, Yaney GC, Tornheim K, Prentki M (2000) The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr 130:299S–304SPubMedGoogle Scholar
  24. Cukras CA, Jeliazkova I, Nichols CG (2002) The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels. J Gen Physiol 120:437–446CrossRefPubMedGoogle Scholar
  25. Deeney JT, Tornheim K, Korchak HM, Prentki M, Corkey BE (1992) Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem 267:19840–19845PubMedGoogle Scholar
  26. Dela F, Mikines KJ, Linstow M von, Secher NH, Galbo H (1992) Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol 263:E1134-E1143PubMedGoogle Scholar
  27. Elbein SC (2002) Perspective: the search for genes for type 2 diabetes in the post-genome era. Endocrinology 143:2012–2018CrossRefPubMedGoogle Scholar
  28. Florez JC, Burtt N, De Bakker PI, Almgren P, Tuomi T, Holmkvist J, Gaudet D, Hudson TJ, Schaffner SF, Daly MJ, Hirschhorn JN, Groop L, Altshuler D (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–1368PubMedGoogle Scholar
  29. Gloyn AL (2003) The search for type 2 diabetes genes. Ageing Res Rev 2:111–127CrossRefPubMedGoogle Scholar
  30. Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC (2001) Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med 18:206–212PubMedGoogle Scholar
  31. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572PubMedGoogle Scholar
  32. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, Rhijn A van, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849CrossRefPubMedGoogle Scholar
  33. Golay A, Swislocki AL, Chen YD, Jaspan JB, Reaven GM (1986) Effect of obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone, and glucagon concentrations. J Clin Endocrinol Metab 63:481–484PubMedGoogle Scholar
  34. Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490-H1501PubMedGoogle Scholar
  35. Gramolini A, Renaud JM (1997) Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility. Am J Physiol 272:C1936-C1946PubMedGoogle Scholar
  36. Gribble FM, Tucker SJ, Ashcroft FM (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16:1145–1152CrossRefPubMedGoogle Scholar
  37. Gribble FM, Proks P, Corkey BE, Ashcroft FM (1998) Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J Biol Chem 273:26383–26387CrossRefPubMedGoogle Scholar
  38. Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM (2000) A novel method for measurement of submembrane ATP concentration. J Biol Chem 275:30046–30049CrossRefPubMedGoogle Scholar
  39. Hani EH, Clement K, Velho G, Vionnet N, Hager J, Philippi A, Dina C, Inoue H, Permutt MA, Basdevant A, North M, Demenais F, Guy-Grand B, Froguel P (1997) Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French Caucasians. Diabetes 46:688–694PubMedGoogle Scholar
  40. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 41:1511–1515Google Scholar
  41. Hansen L, Echwald SM, Hansen T, Urhammer SA, Clausen JO, Pedersen O (1997) Amino acid polymorphisms in the ATP-regulatable inward rectifier Kir6.2 and their relationships to glucose- and tolbutamide-induced insulin secretion, the insulin sensitivity index, and NIDDM. Diabetes 46:508–512PubMedGoogle Scholar
  42. Hansen T, Ambye L, Grarup N, Hansen L, Echwald SM, Ferrer J, Pedersen O (2001) Genetic variability of the SUR1 promoter in relation to beta-cell function and type II diabetes mellitus. Diabetologia 44:1330–1334CrossRefPubMedGoogle Scholar
  43. Hart LM, Knijff P de, Dekker JM, Stolk RP, Nijpels G, Does FE van der, Ruige JB, Grobbee DE, Heine RJ, Maassen JA (1999) Variants in the sulphonylurea receptor gene: association of the exon 16–3t variant with type II diabetes mellitus in Dutch Caucasians. Diabetologia 42:617–620CrossRefPubMedGoogle Scholar
  44. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373PubMedGoogle Scholar
  45. Hegele RA, Zinman B, Hanley AJ, Harris SB, Barrett PH, Cao H (2003) Genes, environment and Oji-Cree type 2 diabetes. Clin Biochem 36:163–170CrossRefPubMedGoogle Scholar
  46. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedGoogle Scholar
  47. Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science 280:1371–1374CrossRefPubMedGoogle Scholar
  48. Huopio H, Shyng SL, Otonkoski T, Nichols CG (2002) K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 283:E207-E216PubMedGoogle Scholar
  49. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170PubMedGoogle Scholar
  50. Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, Turner RC, Elbein SC, Hampe CL, Suarez BK, Inagaki N, Seino S, Permutt MA (1997) Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 46:502–507PubMedGoogle Scholar
  51. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176CrossRefPubMedGoogle Scholar
  52. John SA, Weiss JN, Xie LH, Ribalet B (2003) Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2. J Physiol (Lond)552:23–34CrossRefGoogle Scholar
  53. Karschin A, Brockhaus J, Ballanyi K (1998) KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J Physiol (Lond) 509 :339–346CrossRefGoogle Scholar
  54. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K (2003) A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474PubMedGoogle Scholar
  55. Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem 274:13281–13291Google Scholar
  56. Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6:1–27PubMedGoogle Scholar
  57. Kopp W (2003) High-insulinogenic nutrition—an etiologic factor for obesity and the metabolic syndrome? Metabolism 52:840–844CrossRefPubMedGoogle Scholar
  58. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926CrossRefPubMedGoogle Scholar
  59. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671PubMedGoogle Scholar
  60. Larsson O, Deeney JT, Branstrom R, Berggren PO, Corkey BE (1996) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem 271:10623–10626CrossRefPubMedGoogle Scholar
  61. Li L, Shi Y, Jiang C (2004) Effects of Kir6.2 polymorphism on the ATP sensitivity of skeletal muscle isoform of KATP channels. Diabetes 53 (Suppl 2):10–11Google Scholar
  62. Love-Gregory L, Wasson J, Lin J, Skolnick G, Suarez B, Permutt MA (2003) E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of type II diabetes in Caucasians as the PPARgamma Pro12Ala variant. Diabetologia 46:136–137PubMedGoogle Scholar
  63. MacDonald PE, El Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB (2002) The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 (Suppl 3):S434-S442PubMedGoogle Scholar
  64. Manning Fox JE, Nichols CG, Light PE (2004) Activation of adenosine triphosphate-sensitive potassium channels by acyl coenzyme A esters involves multiple phosphatidylinositol 4,5-bisphosphate-interacting residues. Mol Endocrinol 18:679–686CrossRefPubMedGoogle Scholar
  65. Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, Inanobe A, Yamashita S, Matsuzawa Y, Kurachi Y (2000) C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Circ Res 87:873–880PubMedGoogle Scholar
  66. McCarthy MI (2003) Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 3:159–167PubMedGoogle Scholar
  67. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512PubMedGoogle Scholar
  68. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362PubMedGoogle Scholar
  69. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD (1987) Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 30:763–768CrossRefPubMedGoogle Scholar
  70. Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787PubMedGoogle Scholar
  71. Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577PubMedGoogle Scholar
  72. Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965CrossRefPubMedGoogle Scholar
  73. Prentki M, Corkey BE (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283PubMedGoogle Scholar
  74. Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336CrossRefPubMedGoogle Scholar
  75. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37:1020–1024PubMedGoogle Scholar
  76. Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763PubMedGoogle Scholar
  77. Renaud JM (2002) Modulation of force development by Na+, K+, Na+ K+ pump and KATP channel during muscular activity. Can J Appl Physiol 27:296–315PubMedGoogle Scholar
  78. Riedel MJ, Boora P, Steckley D, De Vries G, Light PE (2003) Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 52:2630–2635PubMedGoogle Scholar
  79. Ronner P, Naumann CM, Friel E (2001) Effects of glucose and amino acids on free ADP in betaHC9 insulin-secreting cells. Diabetes 50:291–300PubMedGoogle Scholar
  80. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O (2003) Endurance Ttaining in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881PubMedGoogle Scholar
  81. Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM (1995) Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 377:338–344CrossRefPubMedGoogle Scholar
  82. Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM (1996) Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in white Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39:1233–1236PubMedGoogle Scholar
  83. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T (2003a) Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem 278:10500–10505Google Scholar
  84. Schulze D, Rapedius M, Krauter T, Baukrowitz T (2003b) Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol (Lond)552:357–367Google Scholar
  85. Schwanstecher C, Schwanstecher M (2002) Nucleotide sensitivity of pancreatic ATP-sensitive potassium channels and type 2 diabetes. Diabetes 51 (Suppl 3):S358-S362PubMedGoogle Scholar
  86. Schwanstecher C, Meyer U, Schwanstecher M (2002a) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 51:875–879PubMedGoogle Scholar
  87. Schwanstecher C, Neugebauer B, Schulz M, Schwanstecher M (2002b) The common single nucleotide polymorphism E23K in K(IR)6.2 sensitizes pancreatic beta-cell ATP-sensitive potassium channels toward activation through nucleoside diphosphates. Diabetes 51 (Suppl 3):S363-S367PubMedGoogle Scholar
  88. Seino S (2003) Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review. J Diabetes Complications 17:2–5CrossRefPubMedGoogle Scholar
  89. Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664CrossRefPubMedGoogle Scholar
  90. Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141CrossRefPubMedGoogle Scholar
  91. Shyng S, Ferrigni T, Nichols CG (1997) Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 110:643–654Google Scholar
  92. Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P, Porcher R, Hadjadj S, Pratley R, Tataranni PA, Calvo F, Gautier JF (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361:1861–1865CrossRefPubMedGoogle Scholar
  93. Storgaard H, Jensen CB, Vaag AA, Volund A, Madsbad S (2003) Insulin secretion after short- and long-term low-grade free fatty acid infusion in men with increased risk of developing type 2 diabetes. Metabolism 52:885–894CrossRefPubMedGoogle Scholar
  94. ’t Hart LM, Haeften TW van, Dekker JM, Bot M, Heine RJ, Maassen JA (2002) Variations in insulin secretion in carriers of the E23K variant in the KIR6.2 subunit of the ATP-sensitive K(+) channel in the beta-cell. Diabetes 51:3135–3138PubMedGoogle Scholar
  95. Thorens B (2003) A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Pflugers Arch 445:482–490PubMedGoogle Scholar
  96. Trapp S, Haider S, Jones P, Sansom MS, Ashcroft FM (2003) Identification of residues contributing to the ATP binding site of Kir6.2. EMBO J 22:2903–2912CrossRefPubMedGoogle Scholar
  97. Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, Teigeler A, Haring H, Fritsche A (2002) The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51:2854–2860PubMedGoogle Scholar
  98. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183CrossRefPubMedGoogle Scholar
  99. Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO J 17:3290–3296CrossRefPubMedGoogle Scholar
  100. Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J Biol Chem 274:28079–28082CrossRefPubMedGoogle Scholar
  101. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMedGoogle Scholar
  102. Yamada Y, Kuroe A, Li Q, Someya Y, Kubota A, Ihara Y, Tsuura Y, Seino Y (2001) Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients. Diabetes Metab Res Rev 17:213–216CrossRefPubMedGoogle Scholar
  103. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol (Lond) 514:327–341CrossRefGoogle Scholar
  104. Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99:13278–13283CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Michael J. Riedel
    • 1
  • Diana C. Steckley
    • 1
  • Peter E. Light
    • 1
  1. 1.Department of PharmacologyUniversity of AlbertaEdmontonCanada

Personalised recommendations